References

PREDICTING CHAOTIC TIME SERIES USING NEURAL NETWORKS WITH DELAY COORDINATES AS INPUTS


[1] P. S. Addison and D. J. Low, order and chaos in the dynamics of vehicle platoons, Traffic Engineering + Control, July/August, (1996), 456-459.

[2] A. M. Albano, A. Passamante, T. Hediger and M. E. Farrell, Using neural nets to look for chaos, Physica D 58 (1992), 1-9.

[3] K. T. Alligood, T. D. Sauer and J. A. Yorke, Chaos: An Introduction to Dynamical Systems, Springer-Verlag, Inc., New York, (1997).

[4] L. A. Aquirre and S. A. Billings, Validating identified nonlinear models with chaotic dynamics, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 4(1) (1994), 109-125.

[5] R. Bakker, J. C. Schouten, F. Takens and C. M. van den Bleek, Neural network model to control an experimental chaotic pendulum, Physical Review E 54A (1996), 3545-3552.

[6] G. Deco and B. Schurmann, Neural learning of chaotic system behavior, IEICE Transactions, Fundamentals E77-A(11) (1994), 1840-1845.

[7] H. Demuth and M. Beale, Neural Network Toolbox for Use with MATLAB, User’s Guide, Version 4, The Math Works, Inc., Natick, MA, (2004).

[8] J. E. Disbro and M. Frame, Traffic flow theory and chaotic behavior, Transportation Research Record 1225 (1989), 109-115.

[9] J. D. Farmer and J. J. Sidorowich, Predicting chaotic time series, Phys. Rev. Letters 59 (1987), 62-65.

[10] H. Fu, J. Xu and L. Xu, Traffic chaos and its prediction based on a nonlinear car-following model, J. Control Theory Appl. 3(3) (2005), 302-307.

[11] D. C. Gazis, R. Herman and R. W. Rothery, Nonlinear follow-the-leader models of traffic flow, Operational Research 9(4) (1961), 545-567.

[12] P. Grassberger and I. Proccacia, Characterization of strange attractors, Phys. Rev. Letters 50 (1983), 346-349.

[13] M. T. Hagan and M. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks 5(6) (1994), 989-993.

[14] D. D. Hebb, The Organization Behavior, John Wiley, New York, (1949).

[15] J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci., USA 79(8) (1982), 2554-2558.

[16] J. J. Hopfield, D. I. Feinstein and R. G. Palmers, Unlearning has a stabilizing effect in collective memories, Nature 304 (1983), 158-159.

[17] K. Levenberg, A method for the solution of certain problems in least squares, Quart. Appl. Math. 2 (1944), 164-168.

[18] D. J. C. MacKay, Bayesian interpolation, Neural Computation 4(3) (1992), 415-447.

[19] D. Marquardt, An algorithm for least squares estimation of nonlinear parameters, SIAM J. Appl. Math. 11 (1963), 431-441.

[20] W. S. McCulloch and W. Pitts, A logical calculus of ideas immanent in nervous activity, Bull. Math. Biophys. 5 (1943), 115-133.

[21] W. Mendenhall, R. L. Scheaffer and D. D. Wackerly, Mathematical Statistics with Applications, Third Edition, Duxbury Press, Boston, (1986).

[22] F. C. Moon, Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineer, John-Wiley and Sons, New York, (1992).

[23] J. C. Principe, A. Rathie and J. M. Kuo, Prediction of chaotic time series with neural networks and the issue of dynamic modelling, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 2 (1992), 989-996.

[24] F. Rosenblatt, The perception: a probabilistic model for information storage and organization in the brain, Psychological Review 65(6) (1958), 386-408.

[25] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1 (Foundations), The MIT Press, Cambridge, MA, (1986).

[26] F. Takens, Detecting strange attractors in turbulence, Lecture Notes in Mathematics 898 (1981), 366-381.