[1] Y. Kuang, Delay Differential Equations with Applications in
Population Dynamics, Academic Press, New York, 1993.
[2] H. Fang and J. B. Li, On the existence of periodic solutions of a
neutral delay model of single-species population growth, J. Math.
Anal. Appl. 259 (2001), 8-17.
[3] S. P. Lu and W. G. Ge, Existence of positive periodic solutions
for neutral population model with multiple delays, Appl. Math. Comput.
153 (2004), 885-892.
[4] Z. H. Yang and J. D. Cao, Positive periodic solutions of neutral
Lotka-Volterra system with periodic delays, Appl. Math. Comput. 149
(2004), 661-687.
[5] Z. J. Liu and L. S. Chen, On positive periodic solutions of a
non-autonomous neutral delay n-species competitive system,
Nonlinear Analysis 68 (2008), 1409-1420.
[6] J. R. Yan and A. M. Zhao, Oscillation and stability of linear
impulsive delay differential equations, J. Math. Anal. Appl. 227
(1998), 187-194.
[7] X. Z. Liu and G. Ballinger, Boundedness for impulsive delay
differential equations and applications to population growth models,
Nonlinear Anal. 53 (2003), 1041-1062.
[8] B. C. Zhang and Y. J. Liu, Global attractivity for certain
impulsive delay differential equations, Nonlinear Analysis 35 (2003),
725-736.
[9] J. Zhen, Z. E. Ma and M. A. Han, The existence of periodic
solutions of the n-species Lotka-Voterra competition systems
with impulsive, Chaos Solutions Fractals 22 (2004), 181-188.
[10] L. Z. Dong and L. S. Chen, A periodic predator-prey-chain system
with impulsive perturbation, J. Comput. Appl. Math. 223 (2009),
578-584.
[11] L. F. Nie, Z. D. Teng, L. Hu and J. G. Peng, Qualitative analysis
of a modified Leslie-Gower and Holling-type II predator-prey model
with state dependent impulsive effects, Nonlinear Analysis: RWA. 11
(2010), 1364-1373.
[12] A. M. Samoilenko and N. A. Perestyuk, Differential Equations with
Impulse Effect, World Scientific Publisher, Singapore, 1993.
[13] D. D. Bainov and P. Simeonov, Impulsive Differential Equations:
Periodic Solutions and Applications, Longman, England, 1993.
[14] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential
Equations, World Scientific, Singapore, 1995.
[15] M. Benchohra, J. Henderson and S. K. Ntouyas, Impulsive
Differential Equations and Inclusions, Hindawi Publishing Corporation,
Volume 2, New York, 2006.
[16] J. Zhen, Z. Ma and M. Han, The existence of periodic solutions of
the n-species Lotka-Volterra competition systems with impulse,
Chaos Solitons Fractals 22 (2004), 181-188.
[17] H. F. Huo, Existence of positive periodic solutions of a neutral
delay Lotka-Volterra systems with impulses, Comput. Math. Appl. 48
(2004), 1833-1846.
[18] Y. K. Li, L. H. Lu and X. Y. Zhu, Existence of periodic solutions
in n-species food-chain system with impulsive, Nonlinear
Analysis: RWA. 7 (2006), 414-431.
[19] Y. H. Xia, Positive periodic solutions for a neutral impulsive
delayed Lotka-Volterra competition system with the effect of toxic
substance, Nonlinear Analysis: RWA. 8 (2007), 204-221.
[20] Q. Wang and B. X. Dai, Existence of positive periodic solutions
for a neutral population model with delays and impulse, Nonlinear
Analysis 69 (2008), 3919-3930.
[21] M. X. He and F. D. Chen, Dynamic behaviors of the impulsive
periodic multi-species predator-prey system, Comput. Math. Appli. 57
(2009), 248-265.
[22] R. Q. Shi and L. S. Chen, An impulsive predator-prey model with
disease in the prey for integrated pest management, Communications in
Nonlinear Science and Numerical Simulation 5 (2010), 421-429.
[23] L. Erbe, W. Krawcewicz and J. H. Wu, A composite coincidence
degree with applications to boundary value problems of neutral
equations, Trans. Amer. Math. Soc. 335 (1993), 459-478.
[24] W. Krawcewicz and J. H. Wu, Theory of Degrees with Applications
to Bifurcations and Differential Equations, John Wiley & Sons, Inc.,
New York, 1996.
[25] H. Fang, Positive periodic solutions of n-species neutral
delay systems, Czechoslovak Math. J 53 (2003), 561-570.
[26] Q. Wang, B. X. Dai and Y. M. Chen, Multiple periodic solutions of
an impulsive predator-prey model with Holling IV functional response,
Math. Comput. Model. 49 (2009), 1829-1836.