References

WICK-TYPE STOCHASTIC KDV EQUATION BASED ON LÉVY WHITE NOISE


[1] M. Wadati, Stochastic Korteweg-de Vries equation, J. Phys. Soc. Jpn. 52 (1983), 2642-2648.

[2] Y. C. Xie, Exact solutions for stochastic KdV equations, Phys. Lett. A 310 (2003), 161-167.

[3] B. Chen and Y. C. Xie, Exact solutions for Wick-type stochastic coupled Kadomtsev-Petviashili equations, J. Phys. A: Math. Gen. 38 (2005), 815-822.

[4] B. Chen and Y. C. Xie, Exact solutions for generalized stochastic Wick-type KdV-mKdV equations, Chaos, Solitons and Fractals 23 (2005), 281-288.

[5] B. Chen and Y. C. Xie, White noise functional solutions of Wick-type stochastic generalized Hirota-Satsuma coupled KdV equations, J. Comput. Appl. Math. 197 (2006), 345-354.

[6] B. Chen and Y. C. Xie, Periodic-like solutions of variable coefficients and Wick-type stochastic NLS equations, 203 (2007), 249-263.

[7] Y. C. Xie, An auto-Bäcklund transformation and exact solutions for Wick-type stochastic generalized KdV equations, J. Phys. A: Math. Gen. 37 (2004), 5229-5236.

[8] Y. C. Xie, Positonic solutions for Wick-type stochastic KdV equations, Chaos, Solitons and Fractals 20 (2004), 337-342.

[9] Y. C. Xie, Exact solutions of the Wick-type stochastic Kadomtsev-Peviashvili equations, Chaos, Solitons and Fractals 21 (2004), 473-480.

[10] H. A. Ghany. Exact solutions for stochastic generalized Hirota-Satsuma coupled KdV equations. Chin. J. Phys. 49 (2011), 926-940.

[11] H. A. Ghany, Exact solutions for KdV-Burger equations with an application of white-noise analysis, International Journal of Pure and Applied Mathematics 78 (2012), 17-27.

[12] H. A. Ghany, Analytical approach to exact solutions for the Wick-type stochastic space-time fractional KdV equation, Chin. Phys. Lett. 31 (2014), 060503.

[13] H. A. Ghany, A. S. Okb El Bab, A. M. Zabal and A. Hyder, The fractional coupled KdV equations: Exact solutions and white noise functional approach, Chin. Phys. B 22 (2013), 0805011.

[14] H. A. Ghany and A. Hyder, White noise functional solutions for Wick-type stochastic coupled KdV equations, Journal of Mathematical Sciences: Advances and Applications 11 (2011), 79-96.

[15] H. A. Ghany and A. Hyder, White noise functional solutions for the Wick-type two-dimensional stochastic Zakharov-Kuznetsov equations, Int. Rev. Phys. 6 (2012), 153-157.

[16] H. A. Ghany and A. Hyder, Local and global well-posedness of stochastic Zakharov-Kuznetsov equation, J. Comput. Anal. Appl. 15 (2013), 1332-1343.

[17] H. A. Ghany and A. Hyder, Exact solutions for the Wick-type stochastic time-fractional KdV equations, Kuwait Journal of Science 41 (2014), 75-84.

[18] H. A. Ghany and A. Hyder, Abundant solutions of Wick-type stochastic fractional 2D KdV equation, Chin. Phys. B 23 (2014), 060503.

[19] H. A. Ghany, A. Hyder and M. Zakarya, Non-Gaussian white noise functional solutions of stochastic KdV equations, Appl. Math. Inf. Sci., Accepted (2017).

[20] A. Hyder and M. Zakarya, Non-Gaussian Wick calculus based on hypercomplex systems, International Journal of Pure and Applied Mathematics 109 (2016), 539-556.

[21] S. Albeverio, Yu. G. Kondratev and L. Streit, How to generalize white noise analysis to non-Gaussian spaces, in: Dynamics of Complex and Irregular Systems, World Scientific, Singapore (1993), 48-60.

[22] Y. Kondratiev, J. L. DA Silva and L. Streit, Generalized Appell system, Meth. Funct. Anal. Topol. 3 (1997), 28-61.

[23] Y. Kondratiev, J. L. DA Silva, L. Streit and G. US, Analysis on Poisson and gamma spaces, Infin. Dim. Anal. Quantum Probab. Relat. Top. 1 (1998), 91-117.

[24] B. A. Løkka, B. Øksendal and F. Proske, Stochastic partial differential equations driven by Lévy space-time white noise, The Annals of Applied Probability 14 (2004), 1506-1528.

[25] B. Øksendal, Stochastic partial differential equations driven by multi-parameter white noise of Lévy processes, Quart. Appl. Math. 66 (2008), 521-537.

[26] H. Holden, B. Øksendal, J. Ubøe and T. Zhang, Stochastic Partial Differential Equations, Springer Science+Business Media, LLC, 2010.

[27] A. de Bouard and A. Debussche, On the stochastic Korteweg-de Vries Equation, J. Funct. Anal. 154 (1998), 215-251.

[28] M. L. Wang, Y. M. Wang, A new Bäcklund transformation and multi-soliton solutions to the KdV equation with general variable coefficients, Phys. Lett. A 287 (2001), 211-216.

[29] C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Method for solving the KdV equation, Phys. Rev. Lett. 19 (1967), 1095-1097.

[30] S. K. Liu, Q. Zhao, Z. T. Fu and S. D. Liu, Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations, Acta Phys. Sin. 50 (2001), 2068-2073.

[31] B. Øksendal and F. Proske, White noise of Poisson random measures, Potential Anal. 21 (2004), 375-403.

[32] Z. X. Wang and D. R. Guo, Introduction to Special Functions, Peking University Press: China, 2000.