References

THE METHOD OF LINES WITH A FINITE VOLUMES APPROACH FOR TRANSIENT CONVECTION-DIFFUSION PROBLEMS


[1] A. Balaguer, C. Conde, A. Del Cerro, J. A. Lopez and V. Martinez, A finite volume characteristics method for the one-dimensional simulation of pollutant transport in groundwater, WIT Transactions on Ecology and the Environment 7 (1994), 8-15.

DOI: 10.2495/HY940321

[2] R. Eymard, T. Gallout and R. Herbin, The finite volume methods, In: Handbook of Numerical Analysis, III, P. G. Ciarlet and J. L. Lions Editors, North-Holland, Amsterdam, (2000), 713-1020.

[3] R. Eymard, T. Gallout and R. Herbin, Finite Volume Methods, Update of the preprint

www.cmi.univ-mrs.fr/~herbin/PUBLI/bookevol.pdf

[4] S. Gupta, D. Kumar and J. Singh, Analytical solutions of convection diffusion problems by combining Laplace transform method and homotopy perturbation method, Alexandria Engineering Journal 54 (2015), 645-651.

[5] S. Hamdi, W. E. Schiesser and G. W. Griffiths, Method of lines, Scholarpedia 2(7) (2009), 2859.

[6] S. K. Li, F. Ruan and D. Mclaughlin, A space-time accurate method for solving solute transport problems, Water Source Research 28(9) (1992), 2297-2306.

[7] E. Majchrzak and L. Turchan, The finite difference method for transient convection-diffusion problems, Scientific Research of the Institute of Mathematics and Computer Science 11(1) (2012), 63-72.

DOI: 10.17512/jamcm.2012.1.07

[8] B. Ondami, Approximation of a second-order elliptic equation with discontinuous and highly oscillating coefficients by finite volume methods, Journal of Mathematics Research 8(6) (2016), 34-44.

DOI: http://dx.doi.org/10.5539/jmr.v8n6p34

[9] B. Ondami, Finite volume discretization for the one-dimensional convection diffusion-dissipation equation, Journal of Applied Mathematical Research 5(4) (2016), 206-208.

DOI: 10.14419/ijamr.v5i4.6752

[10] O. Runborg, Finite Volume Discretization of the Heat Equation, KTH Computer Science and Communication.

http://www.csc.kth.se/utbildning/kth/kurser/DN2255/ ndiff13/Lecture3.pdf

[11] L. D. Su, Z. W. Jiang and T. S. Jiang, Numerical method for one-dimensional convection-diffusion equation using radical basis functions, J. Phys. Math. 6(2) (2015).

http://dx.doi.org/10.4172/2090-0902.1000136

[12] J. B. Yindoula, P. Youssouf, G. Bissanga, F. Bassono and B. Somé, Application of the Adomian decomposition method and Laplace transform method to solving the convection diffusion-dissipation equation, International Journal of Applied Mathematical Research 3(1) (2014), 30-35.

DOI: 10.14419/ijamr.v3i1.1596