[1] G. Freiling and V. Yurko, Inverse Sturm-Liouville Problems and
their Applications, Nova Science Publishers, Inc. Huntington, New
York, 2008.
[2] M. G. Fasimov and B. M. Levitan, Determination of a differential
equation by two spectra, UMN. (1964)-T(19). No 2. (116). 3-63.
[3] I. M. Gelfand and B. M. Levitan, Determination of a differential
equation by its function spektralno. Izv. ÐN SSSR
Ser.Мат-(1951).T.15.-S. 309-360.
[4] Göran Borg, Eine Umkehrung der Strum-Liouvilleschen
Eigenwertaufgabe, Acta Math. 78-(1946), 1-96.
[5] M. Pikula, A differential operator of Sturm-Liouville problem with
delay of two spectra, Bulletin Mathematica 43 (1991), 159-171.
[6] M. Pikula and T. Marjanovi, The construction of the small
potential for an equation of Sturm-Liouville type with constant delay,
Mathematical Conference in Pristin (1996), 135-141.
[7] R. I Lazovic and M. Pikula, Regularized trace of the operator
applied to solving inverse problems, Radovi Matematicki, 2002.
[8] M. Pikula, On the determination equation of a differential with
variable delay equation, Mathematica Montisnigri VI (1996).
[9] V. Vladicic, Doctoral thesis, University of East Sarajrevo, 2013.
god.
[10] M. Pikula and I. Kalco, Eigenvalues operator Sturm-type Liouville
with variable delay type of Proceedings of the Second Mathematical
Conference of the Republic of Srpska, (2012), 73-85.
[11] M. Pikula and I. Kalco, Design solutions border task with linear
delay, Proceedings of the Third Mathematical Conference of the
Republic of Srpska, (2013).
[12] I. Kalco, Construction solutions differential operator type Sturm
–Liouville border task with linear delay, Bulletin of the
international mathematical virtual institute ISSN (p) 2303-4874, ISSN
(o) 2303-4955, 0.951.
[13] I. Kalco, M. Pikula and V. Miletic, Relations between the Fourier
coefficients of transition function operator Sturm-type Liuvila with
linear delay and own values of these operators, Proceedings of the
Fourth Mathematical Conference of the Republic of Srpska, (2014),
383-394.