References

ON ARCHIMAX COPULAS AND MULTIVARIATE GPD MODELS


[1] Barro Diakarya, Diallo Moumouni and Bagré Remi Guillaume, Spatial tail dependence and survival stability in a class of Archimedean copulas, Inter. J. Math. Math. Sci. 2016 (2016), Article ID 8927248, 8 pp.

http://dx.doi.org/10.1155/2016/8927248

[2] Barro Diakarya, Conditional dependence of trivariate generalized Pareto distributions, Asian Journal of Mathematics & Statistics 2(2) (2009), 20-32.

DOI: 10.3923/ajms.2009.20.32

[3] J. Beirlant, Y. Goegebeur, J. Segers and J. Teugels, Statistics of Extremes: Theory and Application-Wiley, Chichester, England, 2005.

[4] A. Charpentier and J. Segers, Tails of multivariate Archimedean copulas, J. Multivariate Anal. 100(7) (2009), 1521-1537.

http://dx.doi.org/10.1016/j.jmva.2008.12.015

[5] M. Degen, On Multivariate Generalised Pareto Distributions and High Risk Scenarios - Thesis, Department of Mathematics, ETH Zürich, 2006.

[6] C. Genest and J. Mackay, Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données, Canadian Journal of Statistics 14 (1993), 145-159.

[7] J. Husler and R.-D. Reiss, Extreme Value Theory, Proceedings of a Conference held in Oberwolfach, Dec. 6-12, 1987. Springer, Berlin etc. H.-J. Lenz, 1989.

[8] H. Joe, Multivariate Models and Dependence Concepts, Monographs on Statistics and Applied Probability 73, Chapman and Hall, London, ISBN 978-0-412-7331 (1997).

[9] S. I. Resnick, Extreme Values, Regular Variation and Point Processes-Springer-Verlag, 1987.

[10] N. Tajvidi, Characterisation and Some Statistical Aspects of Univariate and Multivariate Generalised Pareto Distributions, Department of Mathematics, Chalmers Tekniska Hogskola Goteborg, 1996.

http://www.math.chalmers.se/~nader/thesis.ps