[1] Barro Diakarya, Diallo Moumouni and Bagré Remi Guillaume,
Spatial tail dependence and survival stability in a class of
Archimedean copulas, Inter. J. Math. Math. Sci. 2016 (2016), Article
ID 8927248, 8 pp.
http://dx.doi.org/10.1155/2016/8927248
[2] Barro Diakarya, Conditional dependence of trivariate generalized
Pareto distributions, Asian Journal of Mathematics & Statistics 2(2)
(2009), 20-32.
DOI: 10.3923/ajms.2009.20.32
[3] J. Beirlant, Y. Goegebeur, J. Segers and J. Teugels, Statistics of
Extremes: Theory and Application-Wiley, Chichester, England, 2005.
[4] A. Charpentier and J. Segers, Tails of multivariate Archimedean
copulas, J. Multivariate Anal. 100(7) (2009), 1521-1537.
http://dx.doi.org/10.1016/j.jmva.2008.12.015
[5] M. Degen, On Multivariate Generalised Pareto Distributions and
High Risk Scenarios - Thesis, Department of Mathematics, ETH
Zürich, 2006.
[6] C. Genest and J. Mackay, Copules archimédiennes et familles de
lois bidimensionnelles dont les marges sont données, Canadian
Journal of Statistics 14 (1993), 145-159.
[7] J. Husler and R.-D. Reiss, Extreme Value Theory, Proceedings of a
Conference held in Oberwolfach, Dec. 6-12, 1987. Springer, Berlin etc.
H.-J. Lenz, 1989.
[8] H. Joe, Multivariate Models and Dependence Concepts, Monographs on
Statistics and Applied Probability 73, Chapman and Hall, London, ISBN
978-0-412-7331 (1997).
[9] S. I. Resnick, Extreme Values, Regular Variation and Point
Processes-Springer-Verlag, 1987.
[10] N. Tajvidi, Characterisation and Some Statistical Aspects of
Univariate and Multivariate Generalised Pareto Distributions,
Department of Mathematics, Chalmers Tekniska Hogskola Goteborg,
1996.
http://www.math.chalmers.se/~nader/thesis.ps