References

ON A CERTAIN CRITERION OF SHYNESS FOR SUBSETS IN THE PRODUCT OF UNIMODULAR POLISH GROUPS THAT ARE NOT COMPACT


[1] R. Baker, Lebesgue measure on II Proc. Amer. Math. Soc. 132 (9), (2004), 2577-2591.

[2] J. P. R. Christensen, Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, Actes du Deuxime Colloque d’Analyse Fonctionnelle de Bordeaux (Univ. Bordeaux, 1973), I, pp. 29-39, Publ. Dp. Math. (Lyon) 10(2) (1973), 29-39.

[3] R. Dougherty, Examples of non-shy sets, Fund. Math. 144 (1994), 73-88.

[4] P. R. Halmos, Measure Theory, Princeton, Van Nostrand, (1950).

[5] B. Hunt, T. Sauer and J. Yorke, Prevalence: a translation-invariant almost every on infinite-dimensional spaces, Bull. Amer. Math. Soc. 27 (1992), 217-238.

[6] Hun Hee Lee, Vector valued Fourier analysis on unimodular groups, Math. Nachr. 279(8) (2006), 854-874.

[7] J. Mycielski, Some unsolved problems on the prevalence of ergodicity, instability, and algebraic independence, Ulam Quart. 1(3) (1992), 30 ff., approx. 8 pp.

[8] G. R. Pantsulaia, On generators of shy sets on Polish topological vector spaces, New York J. Math. 14 (2008), 235-259.

[9] G. R. Pantsulaia, Change of variable formula for Lebesgue measures on J. Math. Sci.: Adv. Appl., Scientific Advances Publishers 2(1) (2009), 1-12.

[10] C. A. Rogers, Hausdorff Measures, Cambridge Univ. Press, (1970).

[11] Hongjia Shi, Measure-Theoretic Notions of Prevalence, Ph.D. Dissertation (under Brian S. Thomson), Simon Fraser University (1997), ix+165 pages.

[12] F. J. Hoffmann- Analytic Spaces and Their Application, C. A. Rogers (et al.), Analytic Sets, Academic Press, London, (1980), 317-401.