References

HYBRID TS-IBPSO FOR FEATURE SELECTION


[1] Imtiaz Ahmad, K. Muhammad Dhodhi and M. Faridah Ali, Tabu search based scheduling algorithm for behavioral synthesis of functional pipelines, The Computer Journal 13 (2000), 152-166.

[2] F. Brill, D. Brown and W. Martin, Fast genetic selection of features for neural network classifiers, IEEE Transactions of Neural Networks 3(2) (1992), 324-328.

[3] L. Y. Chuang, H. W. Chang, C. J. Tu and C. H. Yang, Improved binary PSO for feature selection using gene expression data, Computational Biology and Chemistry 32 (2008), 29-38.

[4] T. Cover and P. Hart, Nearest neighbor pattern classification, Proc. IEEE Trans. Information Theory IT-11 (1967), 21-27.

[5] K. Crammer and Y. Singer, On the Learn Ability and Design of Output Codes for Multiclass Problems, Proceedings of the Thirteen Annual Conference on Computational Learning Theory (COLT 2000), Stanford University, Palo Alto, CA, June 28-July 1, (2000).

[6] B. V. Dasarathy, NN concepts and techniques, nearest neighbor (NN) norms: NN Pattern classification techniques, (Ed.), IEEE Computer Society Press (1991), 1-30.

[7] C. Dimitropoulos, Tabu search for the radio links frequency assignment problem, Proceedings of the Conference on Applied Decision Technologies 2 (1995), 233-255.

[8] H. M. Feng, Particle swarm optimization learning fuzzy systems design, Proceedings of the Third International Conference on Information Technology and Applications (ICITA\'05) 2 (2005), 363-366.

[9] E. Fix and J. L. Hodges, Discriminatory analysis-nonparametric discrimination: Consistency Properties, Project 21-49-004, Report 4, US Air Force School of Aviation Medicine, Randolph Field (1951), 261-279

[10] F. Glover, Tabu Search-Part I, ORSA Journal on Computing 3 (1989), 190-206.

[11] F. Glover, Tabu Search-Part II, ORSA Journal on Computing 2 (1990), 4-32.

[12] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, Prediction Springer, (2001).

[13] C. W. Hsu and C. J. Lin, A comparison of methods for multi-class support vector machines, IEEE Trans. Neural Network 12 (2002), 415-425.

[14] S. Janson and M. Middendorf, A hierarchical particle swarm optimizer for dynamic optimization problems, LNCS No.3005: Proceedings of Applications of Evolutionary Computing: EvoWorkshops 2004: EvoBIO, EvoCOMNET, EvoHOT, EvoISAP, EvoMUSART, and EvoSTOC, Coimbra, Portugal, (2004), 513-524.

[15] J. Kennedy and R. C. Eberhart, Particle swarm optimization, In proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, 4 (1995), 1942-1948.

[16] J. Kennedy and R. C. Eberhart, A discrete binary version of the particle swarm algorithm, Systems, Man and Cybernetics, 1997, Computational Cybernetics and Simulation, 1997 IEEE International Conference on Volume 5, 12-15 Oct. (1997), 4104-4108.

[17] J. Kennedy, R. C. Eberhart and Y. Shi, Swarm Intelligence, Morgan Kaufmann Publishers, San Francisco, 2001.

[18] U. Kreßel, Pairwise classification and support vector machines, Advances in Kernel Methods, Support Vector Learning, Cambridge, MA: MIT Press (1999), 255-268.

[19] M. Kudo and J. Sklansky, Comparison of algorithms that select features for pattern classifiers Pattern Recognition 33 (2000), 25-41.

[20] T. Li, S. Zhu and M. Ogihara, Efficient multi-way text categorization via generalized discriminant analysis, Proceedings of Twelfth International Conference on Information and Knowledge Management (CIKM 2003), ACM Press, NY, (2003), 317-324.

[21] M. Meissner, M. Schmuker and G. Schneider, Optimized Particle Swarm Optimization (OPSO) and its Application to Artificial Neural Network Training, BMC Bioinformatics, in press, (2006).

[22] T. M. Mitchell, Machine Learning, McGraw-Hill, New York, USA, (1997).

[23] T. Morzy, M. Matysiak and S. Salza, Tabu search optimization of large join queries, Lecture Notes in Computer Science 779 (1994), 309-322.

[24] P. M. Murphy and D. W. Aha, UCI Repository of Machine Learning Databases, Technical Report, Department of Information and Computer Science, University of California, Irvine, Calif, (1994).
Available: www.ics.uci.edu/~mlearn/MLRepository.html
[25] I. S. Oh, J. S. Lee and B. R. Moon, Hybrid genetic algorithms for feature selection, IEEE Trans. Pattern Analysis and Machine Intelligence 26(11) (2004), 1424-1437.

[26] J. C. Platt, N. Cristianini and J. Shawe-Taylor, Large margin DAGS for multiclass classification, Advances in Neural Information Processing Systems 12, MIT Press (2000), 547-553.

[27] P. Pudil, J. Novovicova and J. Kittler, Floating search methods in feature selection, Pattern Recognition Letters 15 (1994), 1119-1125.

[28] B. Roberto, Using mutual information for selecting features in supervised neural net learning, IEEE Trans. on Neural Networks 5(4) (1994), 537-550.

[29] R. S. Safavian and D. Landgrebe, A survey of decision tree classifier methodology, IEEE Trans. Systems, Man, and Cybernetics 21 (1991), 660-675.

[30] Y. H. Shi and R. C. Eberhart, A modified particle swarm optimizer, In Proceedings of the IEEE International Conference on Evolutionary Computation (1998), 69-73.

[31] M. A. Tahir, A. Bouridane, F. Kurugollu and A. Amira, A novel prostate cancer classification technique using intermediate memory tabu search, EURASIP J. Appl. Sign. Proc. 14 (2005), 2241-2249.

[32] M. A. Tahir, A. Bouridane and F. Kurugollu, Simultaneous feature selection and feature weighting using hybrid tabu search/K-nearest neighbor classifier, Pattern Recognition Letters 28 (2007), 438-446.

[33] V. Vapnik, Statistical Learning Theory, Wiley-Interscience, New York, USA, (1998).

[34] M. P. Wachowiak and A. S. Elmaghraby, The continuous Tabu Search as an Optimizer for 2D-to-3D Biomedical Image Registration, Lecture Notes in Computer Science, Proc. MICCAI 2001-2208, (2001), 1273-1274.

[35] J. Weston and C. Watkins, Support vector machines for multi-class pattern recognition, Proceedings of the Seventh European Symposium On Artificial Neural Networks (ESANN 99), Bruges (1999), 21-23.

[36] Habib Youssef and M. Sadiq Sait, Timing-driven global routing for standard-cell {VLSI} design, Int. J. Comp. Sys. Sci. Eng. 14 (1999), 175-185.

[37] B. Yu and B. Yuan, A more efficient branch and bound algorithm for feature selection, Pattern Recognition 26(6) (1993), 883-889.

[38] H. Zhang and G. Sun, Feature selection using tabu search method, Pattern Recognition 35 (2002), 701-711.