References

MULTIPLE POSITIVE SOLUTIONS WITH CHANGING SIGN ENERGY FOR CRITICAL LAPLACIAN SYSTEMS


[1] K. Adriouch and A. El Hamidi, The Nehari manifold for systems of nonlinear elliptic equations, Nonlinear Anal. 64(10) (2006), 2149-2167.

[2] K. Adriouch, On Quasilinear and Anisotropic Elliptic Systems with Sobolevs Critical Exponents, PhD Dissertation, Univ. of La Rochelle, France, (2007).

[3] K. Adriouch and A. El Hamidi, On local compactness in quasilinear elliptic problems, Diff. and Int. Equ. 20(1) (2007), 77-92.

[4] A. Ahammou, A multiplicity result for a quasilinear gradient elliptic system, J. Appl. Math. 1(3) (2001), 91-106.

[5] A. Ahammou, On the existence of bounded solutions of nonlinear elliptic systems, IJMMS 30(8) (2002), 479-490.

[6] C. O. Alves and A. El Hamidi, Nehari Manifold and Existence of Positive Solutions to a Class of Quasilinear Problems, (1997).

[7] C. O. Alves, Multiple positive solutions for equations involving critical Sobolev exponent in Electron. J. Differ. Equ. 1997(13) (1997), 1-10.

[8] C. O. Alves, D. C. de Morais Filho and M. A. S. Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents, Nonlinear Anal. T. M. A. 42(5) (2000), 771-787.

[9] H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.

[10] C. N. Chen and S. Y. Tzeng, Some properties of Palais–Smale sequences with applications to elliptic boundary-value problems, Electron. J. Differ. Equ. 1999(17) (1999), 1-29.

[11] H. Egnell, Existence and nonexistence results for m-Laplacian equations involving critical Sobolev exponents, Arch. Rational Mech. Anal. 104 (1988), 57-77.

[12] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, (1990).

[13] G. Talenti, Best Constant in Sobolev Inequality, Ann. Math. 110 (1976), 353-372.

[14] J. Velin, Existence results for some nonlinear elliptic system with lack of compactness. Nonlinear Anal. 52(3) (2003), 1017-1034.