[1] G. E. Andrews, On the foundations of combinatorial theory V.
Eulerian differential operators, Studies In Appl. Math. 50 (1971),
345-375.
[2] J. P. Fang, Extensions of q-Chu-Vandermonde’s
identity, J. Math. Anal. Appl. 339(2) (2007), 845-852.
[3] J. P. Fang, q-Differential operator identities and
applications, J. Math. Anal. Appl. 332(2) (2007), 1393-1407.
[4] N. J. Fine, Basic Hypergeometric Series and Applications,
Mathematical Surveys, 27, Amer. Math. Soc. Providence, RI (1998).
[5] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge
University Press, Cambridge, Ma (1990).
[6] E. G. Kalnins and Jr. W. Miller, q-series and orthogonal
polynomials associated with Barnes’ first lemma, SIAM J. Math.
Anal. 19 (1998), 1216-1231.
[7] Z. G. Liu, Some operator identities and q-series
transformation formulas, Discrete Math. 265 (2003), 119-139.
[8] Z. G. Liu, An expansion formula for q-series and
applications, The Ramanujan J. 6 (2002), 429-447.
[9] Z. G. Liu, A new proof of the Nassrallah-Rahman integral, Acta
Math. Sinica 41 (1998), 405-410 (in Chinese).
[10] Z. G. Liu, An Identity For q-differential operators and
it’s application, J. Systems Sci. Math. Sci. 18 (1998), 321-327
(in Chinese).
[11] M. Rahman and S. K. Suslov, Barnes and Ramanujan-type integrals
on the q-linear lattice, SIAM J. Math. Anal. 25 (1994),
1002-1022.
[12] S. Roman, More on the umbral calculus, with emphasis on the
q-umbral calculus, J. Math. Anal. Appl. 107 (1985), 222-254.
[13] S. Roman, The theory of the umbral calculus I, J. Math. Anal.
Appl. 87 (1982), 58-115.
[14] G. N. Watson, The continuations of functions defined by
generalized hypergeometric series, Trans. Camb. Phil. Soc. 21 (1910),
281-299.