[1] D. Baldwin, U. Goktas, W. Hereman, L. Hong, R. S. Martino and J.
C. Miller, Symbolic computation of exact solutions expressible in
hyperbolic and elliptic functions for nonlinear PDFs, J. Symbolic
Compt. 37(6) (2004), 669-705.
[2] E. Fan and Y. C. Hon, Generalized tanh method extended to special
types of nonlinear equations, Z. Naturforsch. A 57(8) (2002),
692-700.
[3] C. A. Gomez and A. Salas, The Cole Hopf transformation and
improved tanh-coth method applied to new integrable system (KdV6),
Appl. Math. Comp. 204(2) (2008), 957-962.
[4] C. A. Gomez and A. H. Salas, The generalized tanh-coth method to
special types of the fifth-order KdV equation, Appl. Math. Comp.
203(2) (2008), 873-880.
[5] C. A. Gomez and A. Salas, Exact solutions to a new integrable
system (KdV6), J. of Math. Sciences: Advances and Applications 1(2)
(2008), 305-310.
[6] C. A. Gomez, Special forms of the fifth-order KdV equation with
new periodic and soliton solutions, Appl. Math. Comp. 189(2) (2007),
1066-1077.
[7] C. A. Gomez, Exact solutions for a reaction diffusion equation by
using the generalized tanh method, Scientia Et Technica. 35(8) (2007),
409-410.
[8] C. A. Gomez, A new travelling wave solution of the
Mikhailov-Novikov-Wang system using the extended tanh method, Boletin
de Matematicas 14(1) (2007), 38-43.
[9] C. A. Gomez, New exact solutions of the Mikhailov-Novikov-Wang
system, International Journal of Computer, Mathematical Sciences and
Applications 1 (2007), 137-143.
[10] C. A. Gomez, Exact solutions for a new fifth-order integrable
system, Revista Colombiana de Matematicas 40 (2006), 119-125.
[11] C. A. Gomez and A. Salas, Exact solutions for the generalized
shallow water wave equation by the general projective Riccati
equations method, Boletin de Matematicas 13(1) (2006), 50-56.
[12] C. A. Gomez and A. Salas, New exact solutions for the combined
sinh-cosh-Gordon equation, Lecturas Matematicas, special issue (2006),
87-93.
[13] A. V. Mikhailov, V. Novikov and J. P. Wang, on clasification of
integrable non-evolutionary equation, Studies in Applied Mathematics
118(4) (2007), 419-457.
[14] A. H. Salas and C. A. Gomez, Computing exact solutions for some
fifth KdV equations with forcing term, Appl. Math. Comp. 204(1)
(2008), 257-260.
[15] A. Sergyeyev, Zero curvature representation for a new fifth-order
integrable system, 12(7) (2006), 227-229.
[16] A. M. Wazwaz, The extended tanh method for new solitons solutions
for many forms of the fifth-order KdV equations, Appl. Math. Comp.
84(2) (2007), 1002-1014.
[17] Z. Yan, The Riccati equation with variable coefficients expansion
algorithm to find more exact solutions of nonlinear differential
equation, Comput. Phys. Comm. 152 (1) (2003), 1-8. Prepint version
available at
www.mmrc.iss.ac.cn/pub/mm22.pdf/20.pdf