[1] F. Facchinei and S. Lucidi, Quadratically and superlinearly
convergent for the solution of inequality constrained optimization
problem, JOTA 85(2) (1995), 265-289.
[2] J. B. Jian, A new feasible descent algorithm combining SQP with
generalized projection for optimization problems without strict
complementarity, Appl. Math. Comput. 162 (2005), 1065-1081.
[3] J. T. Mo, K. C. Zhang and W. Z. Wei, A variant of SQP method for
inequality constrained optimization and its global convergence, J.
Comput. Math. 197 (2006), 270-281.
[4] E. R. Panier and A. L. Tits, A superlinearly convergent feasible
method for the solution of inequality constrained optimization
problems, SIAM J. Control Optimization 25 (1987), 934-950; (4) (1992),
1187-1202.
[5] M. J. D. Powell, A fast algorithm for nonlinearly constrained
optimization calculations, in: G. A. Watson (Ed.), Numerical Analysis,
Spring-Verlag, Berlin, (1978), 144-157.
[6] J. L. Zhang and X. S. Zhang, A modified SQP method with
nonmonotone linearsearch technique, J. Global Optim. 21 (2001),
201-218.
[7] Z. B. Zhu, An efficient sequential quadratic programming algorithm
for nonlinear programming, J. Comput. Math. 175 (2005), 447-464.