References

A MODIFIED SQP METHOD FOR INEQUALITY CONSTRAINED OPTIMIZATION WITHOUT STRICT COMPLEMENTARITY


[1] F. Facchinei and S. Lucidi, Quadratically and superlinearly convergent for the solution of inequality constrained optimization problem, JOTA 85(2) (1995), 265-289.

[2] J. B. Jian, A new feasible descent algorithm combining SQP with generalized projection for optimization problems without strict complementarity, Appl. Math. Comput. 162 (2005), 1065-1081.

[3] J. T. Mo, K. C. Zhang and W. Z. Wei, A variant of SQP method for inequality constrained optimization and its global convergence, J. Comput. Math. 197 (2006), 270-281.

[4] E. R. Panier and A. L. Tits, A superlinearly convergent feasible method for the solution of inequality constrained optimization problems, SIAM J. Control Optimization 25 (1987), 934-950; (4) (1992), 1187-1202.

[5] M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, in: G. A. Watson (Ed.), Numerical Analysis, Spring-Verlag, Berlin, (1978), 144-157.

[6] J. L. Zhang and X. S. Zhang, A modified SQP method with nonmonotone linearsearch technique, J. Global Optim. 21 (2001), 201-218.

[7] Z. B. Zhu, An efficient sequential quadratic programming algorithm for nonlinear programming, J. Comput. Math. 175 (2005), 447-464.