References

TRAVELLING WAVE SOLUTIONS FOR TWO COUPLED NONLINEAR EVOLUTION EQUATIONS BY USING MODIFIED DIRECT ALGEBRAIC METHOD


[1] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, Philadephia: SIAM, 1981.

[2] S. P. Novikov, S. V. Manakov and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Methods, New York: Consultants Bureau, 1984.

[3] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge: Cambridge University Press, 1991.

[4] V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Berlin: Springer, 1991.

[5] C. H. Gu and Z. X. Zhou, On Darboux transformations for soliton equations in high-dimensional spacetime, Lett. Math. Phys. 32(1) (1994), 1-10.

[6] H. C. Hu and Q. P. Liu, New Darboux transformation for Hirota-Satsuma coupled KdV system, Chaos, Solitons and Fractals 17(5) (2003), 921-928.

[7] A. N. W. Hone, V. B. Kuznetsov and O. Ragnisco, Bäcklund transformations for many-body systems related to KdV, J. Phys. A 32 (1999), L299-L306.

[8] D. S. Wang and H. Q. Zhang, Auto Bäcklund transformation and new exact solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation, Int. J. Mod. Phys. C 103(16) (2005), 393-412.

[9] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27(18) (1971), 1192.

[10] A. M. Wazwaz, The Hirota’s bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomtsev-Petviashvili equation, Appl. Math. Comput. 200(1) (2008), 160-166.

[11] H. C. Zhang, W. X. Ma and X. Gu, Hirota bilinear equations with linear subspaces of hyperbolic and trigonometric function solutions, Appl. Math. Comput. 220 (2013), 226-234.

[12] G. W. Bluman and J. D. Cole, Similarity Methods for Differential Equations, Berlin: Springer, 1974.

[13] M. Y. Guo, X. Q. Liu and J. Gao, Differential invariants and group classification of KdV-Burgers equation, Chinese Journal of Quantum Electronics 26(6) (2009), 138-147.

[14] A. R. Seadwawy and K. EI-Rashidy, Traveling wave solutions for coupled nonlinear evolution equations, Math. Comput. Model. (57) (2013), 1371-1379.

[15] M. L. Wang, Solition wave solutions for variant Boussinesq equations, Phys. Lett. A 199(3-4) (1995), 169-172.

[16] E. Fan and Y. Hon, Applications of extended tanh method to special types of nonlinear equations, Appl. Math. Comput. 141(2-3) (2003), 351-358.

[17] Z. Zhang, Q. Bi and J. Wen, Bifurcations of traveling wave solutions for two coupled variant Boussinesq equations in shallow water waves, Chaos Solitons Tractals. 24 (2005), 631-643.

[18] X. L. Yang and J. S. Tang, Extended Fans algebra method and its application to KdV and variant Boussinesq equations, Commu. Theor. Phys. 48 (2007), 1-6.

[19] P. L. Christiansen, P. S. Lomdahl and V. Muto, Nonlinearity 4 (1991), 477.

[20] K. P. Khusnutdinova, A. M. Samsonov and A. S. Zakharovv, Phys. Rev. E 79 (2009), 656.

[21] J. A. Wattis, Phys. Lett. A 284 (2001), 16.

[22] L. A. Hassanien, R. A. Zait and E. A. Abdel-Salam, Multicnoidal and multitraveling wave solutions for some nonlinear equations of mathematical physics, Phys. Scr. 67 (2003), 457-463.

[23] J. D. Wright and A. Scheel, Solitary waves and their linear stability in weakly coupled KdV equations, Z. Angew. Math. Phys. 58 (2007), 535-570.