[1] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering
Transform, Philadephia: SIAM, 1981.
[2] S. P. Novikov, S. V. Manakov and L. P. Pitaevskii, Theory of
Solitons: The Inverse Scattering Methods, New York: Consultants
Bureau, 1984.
[3] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution
Equations and Inverse Scattering, Cambridge: Cambridge University
Press, 1991.
[4] V. B. Matveev and M. A. Salle, Darboux Transformations and
Solitons, Berlin: Springer, 1991.
[5] C. H. Gu and Z. X. Zhou, On Darboux transformations for soliton
equations in high-dimensional spacetime, Lett. Math. Phys. 32(1)
(1994), 1-10.
[6] H. C. Hu and Q. P. Liu, New Darboux transformation for
Hirota-Satsuma coupled KdV system, Chaos, Solitons and Fractals 17(5)
(2003), 921-928.
[7] A. N. W. Hone, V. B. Kuznetsov and O. Ragnisco, Bäcklund
transformations for many-body systems related to KdV, J. Phys. A 32
(1999), L299-L306.
[8] D. S. Wang and H. Q. Zhang, Auto Bäcklund transformation and
new exact solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov
equation, Int. J. Mod. Phys. C 103(16) (2005), 393-412.
[9] R. Hirota, Exact solution of the Korteweg-de Vries equation for
multiple collisions of solitons, Phys. Rev. Lett. 27(18) (1971),
1192.
[10] A. M. Wazwaz, The Hirota’s bilinear method and the
tanh-coth method for multiple-soliton solutions of the
Sawada-Kotera-Kadomtsev-Petviashvili equation, Appl. Math. Comput.
200(1) (2008), 160-166.
[11] H. C. Zhang, W. X. Ma and X. Gu, Hirota bilinear equations with
linear subspaces of hyperbolic and trigonometric function solutions,
Appl. Math. Comput. 220 (2013), 226-234.
[12] G. W. Bluman and J. D. Cole, Similarity Methods for Differential
Equations, Berlin: Springer, 1974.
[13] M. Y. Guo, X. Q. Liu and J. Gao, Differential invariants and
group classification of KdV-Burgers equation, Chinese Journal of
Quantum Electronics 26(6) (2009), 138-147.
[14] A. R. Seadwawy and K. EI-Rashidy, Traveling wave solutions for
coupled nonlinear evolution equations, Math. Comput. Model. (57)
(2013), 1371-1379.
[15] M. L. Wang, Solition wave solutions for variant Boussinesq
equations, Phys. Lett. A 199(3-4) (1995), 169-172.
[16] E. Fan and Y. Hon, Applications of extended tanh method to
special types of nonlinear equations, Appl. Math. Comput. 141(2-3)
(2003), 351-358.
[17] Z. Zhang, Q. Bi and J. Wen, Bifurcations of traveling wave
solutions for two coupled variant Boussinesq equations in shallow
water waves, Chaos Solitons Tractals. 24 (2005), 631-643.
[18] X. L. Yang and J. S. Tang, Extended Fans algebra method and its
application to KdV and variant Boussinesq equations, Commu. Theor.
Phys. 48 (2007), 1-6.
[19] P. L. Christiansen, P. S. Lomdahl and V. Muto, Nonlinearity 4
(1991), 477.
[20] K. P. Khusnutdinova, A. M. Samsonov and A. S. Zakharovv, Phys.
Rev. E 79 (2009), 656.
[21] J. A. Wattis, Phys. Lett. A 284 (2001), 16.
[22] L. A. Hassanien, R. A. Zait and E. A. Abdel-Salam, Multicnoidal
and multitraveling wave solutions for some nonlinear equations of
mathematical physics, Phys. Scr. 67 (2003), 457-463.
[23] J. D. Wright and A. Scheel, Solitary waves and their linear
stability in weakly coupled KdV equations, Z. Angew. Math. Phys. 58
(2007), 535-570.