References

SOME TYPES OF RICCI SOLITONS ON


[1] S. R. Ashoka, C. S. Bagewadi and G. Ingalahalli, Certain results on Ricci solitons in manifolds, Hindawi Publ. Corporation, Geometry, Vol. 2013, Article ID 573925, 4 pages.

[2] S. R. Ashoka, C. S. Bagewadi and G. Ingalahalli, A geometry on Ricci solitons in Diff. Geom.-Dynamical Systems 16 (2014), 50-62.

[3] M. Atceken, On geometry of submanifolds of Int. J. Math. and Math. Sci., 2012, doi:10.1155/2012/304647.

[4] M. Atceken and S. K. Hui, Slant and pseudo-slant submanifolds of Czechoslovak Math. J. 63 (2013), 177-190.

[5] C. S. Bagewadi and G. Ingalahalli, Ricci solitons in Lorentzian-Sasakian manifolds, Acta Math. Acad. Paeda. Nyire. 28 (2012), 59-68.

[6] C. L. Bejan and M. Crasmareanu, Ricci solitons in manifolds with quasi constant curvature, Publ. Math. Debrecen 78 (2011), 235-243.

[7] A. M. Blaga, solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015), 1-13.

[8] E. Cartan, Sur une classe remarquable d’espaces de Riemannian, Bull. Soc. Math. France, 54 (1926), 214-264.

[9] M. C. Chaki, On pseudo-symmetric manifolds, An. Sti. Ale Univ. AL. I. CUZA Din Iasi, 33 (1987), 53-58.

[10] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulg. J. Phys. 15 (1988), 526-531.

[11] M. C. Chaki, On generalized pseudo-symmetric manifolds, Publ. Math. Debrecen 45 (1994), 305-312.

[12] S. Chandra, S. K. Hui and A. A. Shaikh, Second order parallel tensors and Ricci solitons on Commun. Korean Math. Soc. 30 (2015), 123-130.

[13] B. Y. Chen and S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl. 19 (2014), 13-21.

[14] U. C. De and S. Bandyopadhyay, On weakly symmetric Riemannian spaces, Publ. Math. Debrecen 54 (1999), 377-381.

[15] U. C. De and A. A. Shaikh, Differential Geometry of Manifolds, Narosa Publishing House Pvt. Ltd., New Delhi, 2007.

[16] S. Deshmukh, H. Al-Sodais and H. Alodan, A note on Ricci solitons, Balkan J. Geom. Appl. 16 (2011), 48-55.

[17] R. Deszcz, On pseudo-symmetric spaces, Bull. Soc. Math. Belg. Sér. A 44(1) (1992), 1-34.

[18] R. Deszcz, On Ricci-pseudosymmetric warped products, Demonstratio Math. 22 (1989), 1053-1065.

[19] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982), 255-306.

[20] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and General Relativity, Contemp. Math., 71, American Math. Soc. (1988), 237-262.

[21] S. K. Hui, On symmetries of Kyungpook Math. J. 53 (2013), 285-294.

[22] S. K. Hui and M. Atceken, Contact warped product semi-slant submanifolds of Acta Univ. Sapientiae Mathematica 3(2) (2011), 212-224.

[23] G. Ingalahalli and C. S. Bagewadi, Ricci solitons in manifolds, ISRN Geometry, Vol. 2012, Article ID 421384, 13 pages.

[24] H. Levy, Symmetric tensors of the second order whose covariant derivatives vanish, Annals of Math. 27 (1926), 91-98.

[25] K. Matsumoto, On Lorentzian almost paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci. 12 (1989), 151-156.

[26] I. Mihai and R. Rosca, On Lorentzian para-Sasakian manifolds, Classical Anal., World Sci. Publ., Singapore, (1992), 155-169.

[27] H. G. Nagaraja and C. R. Premlatta, Ricci solitons in Kenmotsu manifolds, J. Math. Analysis 3 (2012), 18-24.

[28] D. Narain and S. Yadav, On weak concircular symmetries of Global J. Sci. Frontier Research 12 (2012), 85-94.

[29] B. O’Neill, Semi Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.

[30] E. M. Patterson, Some theorems on Ricci-recurrent spaces, J. London Math. Soc. 27 (1952), 287-295.

[31] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, http://arXiv.org/abs/math/0211159, 2002, 1-39.

[32] G. Perelman, Ricci flow with surgery on three manifolds, http://arXiv.org/abs/math/0303109, 2003, 1-22.

[33] D. G. Prakasha, On Ricci Acta Univ. Apulensis 24 (2010), 109-118.

[34] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87.

[35] A. A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43 (2003), 305-314.

[36] A. A. Shaikh, Some results on J. Korean Math. Soc. 46 (2009), 449-461.

[37] A. A. Shaikh and H. Ahmad, Some transformations on Tsukuba J. Math. 38 (2014), 1-24.

[38] A. A. Shaikh and K. K. Baishya, On concircular structure spacetimes, J. Math. Stat. 1 (2005), 129-132.

[39] A. A. Shaikh and K. K. Baishya, On concircular structure spacetimes II, American J. Appl. Sci. 3(4) (2006), 1790-1794.

[40] A. A. Shaikh, T. Basu and S. Eyasmin, On locally Int. J. of Pure and Appl. Math. 41(8) (2007), 1161-1170.

[41] A. A. Shaikh, T. Basu and S. Eyasmin, On the existence of Extracta Mathematicae 23(1) (2008), 71-83.

[42] A. A. Shaikh and T. Q. Binh, On weakly symmetric J. Adv. Math. Studies 2 (2009), 75-90.

[43] A. A. Shaikh and S. K. Hui, On generalized AIP Conf. Proc. 1309 (2010), 419-429.

[44] A. A. Shaikh, Y. Matsuyama and S. K. Hui, On invariant submanifold of J. of Egyptian Math. Soc. (2015).

[45] R. Sharma, Second order parallel tensor in real and complex space forms, International J. Math. and Math. Sci. 12 (1989), 787-790.

[46] R. Sharma, Second order parallel tensor on contact manifolds, Algebras, Groups and Geometrics 7 (1990), 787-790.

[47] R. Sharma, Certain results on and manifolds, J. of Geom. 89 (2008), 138-147.

[48] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying The local version, J. Diff. Geom. 17 (1982), 531-582.

[49] L. Tamássy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc. J. Bolyai 56 (1989), 663-670.

[50] L. Tamássy and T. Q. Binh, On weak symmetrics of Einstein and Sasakian manifolds, Tensor N. S. 53 (1993), 140-148.

[51] M. M. Tripathi, Ricci solitons in contact metric manifolds, arxiv:0801.4221 [Math.DG] (2008).

[52] K. Yano, Concircular geometry I, concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-200.

[53] A. G. Walker, On Ruses spaces of recurrent curvature, Proc. London Math. Soc. 52 (1950), 36-64.