[1] J. L. Alperin, Weights for finite groups, Proceedings of Symposia
in Pure Mathematics 47 (1987), 369-379.
[2] P. Huu Tiep, Globally irreducible representations of the finite
symplectic group Sp4(q), Comm. in Algebra 22 (1994), 6439-6457.
[3] P. Huu Tiep, Basic spin representations of and as globally irreducible representations,
Archive Math. 64 (1995), 103-112.
[4] P. Huu Tiep, Weil representations as globally irreducible
representations, Math. Nachr. 184 (1997), 313-327.
[5] P. Huu Tiep, Globally irreducible representations of finite groups
and integral lattices, Geomet. Dedicata 64 (1997), 85-123.
[6] I. M. Isaacs, Characters of pi-separable groups, J. Algebra 86
(1984), 98-128.
[7] G. James and M. W. Liebeck, Representations and Characters of
Groups, Cambridge University Press, Cambridge, 2001.
[8] G. Navarro, Characters and Blocks of Finite Groups, Cambridge
University Press, New York, 1998.
[9] T. Okuyama, Module correspondence in finite groups, Hokkaido
Mathematical Journal 1O (1981), 299-318.
[10] G. R. Robinson, R. Geoffrey and R. Staszewski, On the
representation theory of groups, J. Algebra 119(1) (1988),
226-232.
[11] A. E. Zalesskii and F. Van Oystaeyen, Finite groups over
arithmetical rings and globally irreducible representations, J.
Algebra 215 (1999), 418-436.
[12] O. Zariski and P. Samuel, Commutative Algebra (1958).