References

NONLINEAR ELLIPTIC EQUATION WITH VARIABLE EXPONENTS AND MEASURE OR DATA


[1] E. Azroul, A. Barbara, M. B. Benboubker and S. Ouaro, Renormalized solutions for a equation with Neumann nonhomogeneous boundary conditions and Annals of Univ. of Craiova, Mathematics and Computer Science Series 40 (2013), 9-22.

[2] M. Bendahmane and P. Wittbold, Renormalized solutions for nonlinear elliptic equations with variable exponents and Nonlinear Analysis TMA 70(2) (2009), 567-583.

[3] K. Bonzi Bernard, I. Nyanquini and S. Ouaro, Existence and uniqueness of weak and entropy solutions for homogeneous Neumann boundrary-value problems involving variable exponents, Electronic Journal of Differential Equations 12 (2012), 1-19.

[4] L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations 17 (1992), 641-655.

[5] L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire 13(5) (1996), 539-551.

[6] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383-1406.

[7] L. Diening, P. Harjulehto, P. Hästö and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Vol. 2017 of Lecture Notes in Mathematics, Springer, 2011.

[8] D. Edmunds and J. Rakosnik, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), 267-293.

[9] X. L. Fan and D. Zhao, On the spaces and J. Math. Anal. Appl. 263 (2001), 424-446.

[10] P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent sobolev spaces with zero boundary values, Potential Analysis 25(3) (2006), 205-222.

[11] B. Lv, F. Li and W. Zou, Existence of weak solutions for some nonlinear elliptic equations with variable exponents, Complex Variables and Elliptic Equations 58 (2013), 1431-1447.

[12] J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod, 1969.

[13] M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenrate problem arising in the theory of eletro-rheological fluids, Proc. R. Soc. A. 462 (2006), 2625-2641.

[14] K. Rajagopal and M. Ruzicka, Mathematical modelling of electro-rheological fluids, Contin. Mech. Thermodyn. 13 (2001), 59-78.

[15] M. Ruzicka, Electrorheological fluids: Modeling and Mathematical Theory, Springer, Berlin, Lecture Notes in Mathematics 1748, 2000.

[16] M. Sanchon and J. M. Urbano, Entropy solutions for the equation, Trans. Amer. Math. Soc. 361 (2009), 6387-6405.

[17] C. Zhang and S. Zhou, Entropy and renormalized solutions for the equation with measure data, Bull. Aust. Math. Soc. 82 (2010), 459-479.

[18] C. Zhang, Entropy solutions for nonlinear elliptic equations with variable exponents, Electronic Journal of Differential Equations 92 (2014), 1-14.