References

A NOTE ON GAGLIARDO-NIRENBERG TYPE INEQUALITY


[1] P. Auscher and P. Tchamitchian, Square root problem for divergence operators and related topics, Asterisque 249 (1998), 1-172.

[2] P. Auscher, S. Hofmann, M. Lacey, A. Mcintosh and Ph. Tchamitchian, The solution of the Kato square root problem for second order elliptic operators on Ann. of Math. 156(2) (2002), 633-654.

[3] C. Bennett and R. Sharpley, Interpolation of Operators, 129, Pure and Applied Mathematics, Academic Press, Inc., Boston, MA, 1988.

[4] D. G. Deng, X. T. Duong, A. Sikora and L. X. Yan, Comparison of the classical BMO with the BMO spaces associated with operators and applications, Rev. Mat. Iberoam. 24(1) (2008), 267-296.

[5] X. T. Duong and L. X. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, Amer. J. Math. 18 (2005), 943-973.

[6] X. T. Duong and L. X. Yan, New function spaces of BMO type, John-Nirenberg inequality, interpolation and applications, Comm. Pure Appl. Math. 58 (2005), 1375-1420.

[7] M. Frazier and B. Jawerth, A discrete transform and decompositions of distributional spaces, J. Funct. Anal. 93 (1990), 34-170.

[8] H. Kozono and H. Wadade, Remarks on Gagliardo-Nirenberg type inequality with critical Sobolev space and BMO, Math. Z. 259(4) (2008), 935-950.

[9] Alan Mcintosh, Operators which have an Miniconference on operator theory and partial differential equations, Proc. Center. Math. Analysis ANU, Canberra, 14 (1986), 210-231.

[10] Z. Shen, On fundamental solution of generalized Schrödinger operators, J. Funct. Anal. 167 (1999), 521-564.

[11] N. T. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups, Cambridge Tracts in Mathematics, 100, Cambridge University Press, Cambridge, 1992.