[1]	O. Araujo and J. Rada, Randić index and lexicographic
order, J. Math. Chem. 27 (2000), 19-30.
 	
[2]	E. Esrrada, Generalization of topological indices, Chem. Phs.
Lett. 336 (2001), 248-252.
	
[3]	M. Fishermann, I. Gutman, A. Hoffmann, D. Rautenbach, D.
Vidoić and L. Volkmann, Extremal chemical trees, Z. Naturforsch
57(a) (2002), 49-52.
	
[4]	I. Gutman and O. Miljković, Connectivity indices, Chem. Phs.
Lett. 306 (1999), 366-372.
	
[5]	P. Hansen and H. Mélot, Variable neighborhood search for
extremal graphs 6: analyzing bounds for the connectivity index, J.
Chem. Inf. Comput. Sci. 43 (2003), 1-14.
	
[6]	Y. Hu, X. Li, Y. Shi, T. Xu and I. Gutman, On molecular graphs
with smallest and greatest zeroth-order genenal Randić index,
MATCH Commun. Math. Comput. Chem. 54 (2005), 425-434.
	
[7]	H. Hua and H. Deng, On unicycle graphs with maximum and minimum
zeroth-order genenal Randić index, Accepted by J. Math. Chem.
	
[8]	L. B. Kier and L. Hall, Molecular Connectivity in Structure
Activity Analysis, Research Studies Press, Wiley, Chichester, UK,
1986.
	
[9]	X. Li and H. Zhao, Trees with the first three smallest and largest
generalized topological indices, MATCH Commun. Math. Comput. Chem. 51
(2004), 205-210.
	
[10]	X. Li and J. Zheng, An unified approach to the extremal trees for
different indices, MATCH Commun. Math. Comput. Chem. 54 (2005),
195-208. 
	
[11]	L. PavloviÄ, Maximal value of the zeroth-order
Randić index, Discrete Applied Mathematics 127 (2003),
615-626.
	
[12]	M. Randić, On the characterization of molecular
branching, J. Am. Chem. Soc. 97 (1975), 6609-6615.
	
[13]	M. Randić, On structural ordering and branching of
acyclic saturated hydrocarbons, J. Math. Chem. 24 (1998), 345-358.
	
[14]	N. Trinajstic, Chemical Graph Theory, CRC press, 1992.
	
[15]	H. Wang and H. Deng, Unicycle graphs with maximum generalized
topological indices, Accepted by J. Math. Chem.