References

UNICYCLE GRAPHS WITH THE FIRST THREE EXTREMAL ZEROTH-ORDER GENERAL RANDIĆ INDICES


[1] O. Araujo and J. Rada, Randić index and lexicographic order, J. Math. Chem. 27 (2000), 19-30.

[2] E. Esrrada, Generalization of topological indices, Chem. Phs. Lett. 336 (2001), 248-252.

[3] M. Fishermann, I. Gutman, A. Hoffmann, D. Rautenbach, D. Vidoić and L. Volkmann, Extremal chemical trees, Z. Naturforsch 57(a) (2002), 49-52.

[4] I. Gutman and O. Miljković, Connectivity indices, Chem. Phs. Lett. 306 (1999), 366-372.

[5] P. Hansen and H. Mélot, Variable neighborhood search for extremal graphs 6: analyzing bounds for the connectivity index, J. Chem. Inf. Comput. Sci. 43 (2003), 1-14.

[6] Y. Hu, X. Li, Y. Shi, T. Xu and I. Gutman, On molecular graphs with smallest and greatest zeroth-order genenal Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005), 425-434.

[7] H. Hua and H. Deng, On unicycle graphs with maximum and minimum zeroth-order genenal Randić index, Accepted by J. Math. Chem.

[8] L. B. Kier and L. Hall, Molecular Connectivity in Structure Activity Analysis, Research Studies Press, Wiley, Chichester, UK, 1986.

[9] X. Li and H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 51 (2004), 205-210.

[10] X. Li and J. Zheng, An unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005), 195-208.

[11] L. Pavlovič, Maximal value of the zeroth-order Randić index, Discrete Applied Mathematics 127 (2003), 615-626.

[12] M. Randić, On the characterization of molecular branching, J. Am. Chem. Soc. 97 (1975), 6609-6615.

[13] M. Randić, On structural ordering and branching of acyclic saturated hydrocarbons, J. Math. Chem. 24 (1998), 345-358.

[14] N. Trinajstic, Chemical Graph Theory, CRC press, 1992.

[15] H. Wang and H. Deng, Unicycle graphs with maximum generalized topological indices, Accepted by J. Math. Chem.