References

SIMULTANEOUS METHODS FOR FINDING ALL ZEROS OF A POLYNOMIAL


[1] O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comput. 27 (1973), 339-344.

[2] E. Durand, Solution Numériques des Équations Algébraiques, Tom. I: Équations du Type Racines d’un Polynôme, Masson, Paris, 1960.

[3] P. Henrici, Applied and Computational Complex Analysis, Vol. 1, John Wiley and Sons Inc., New York, 1974.

[4] I. O. Kerner, Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen, Numer. Math. 8 (1966), 290-294.

[5] M. S. Petković, D. Herceg and I. Petković, On a simultaneous method of Newton-Weierstrass\\\\\\\\\\\\\\\' type for finding all zeros for a polynomial, Appl. Math. Comput. 215 (2009), 2456-2463.

[6] M. S. Petković and L. D. Petković, On a cubically convergent derivative free root finding method, Int. J. Comput. Math. 84 (2007), 505-513.

[7] J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.

[8] S. Weerakoon and T. G. I. Fernando, A variant of Newton’s method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000), 87-93.