References

CRITERIA ENLARGEMENT FOR AN INEQUALITY BETWEEN QUASI-ARITHMETIC MEANS


[1] J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Inc., 1992.

[2] V. Culjak, B. Ivankovic and J. E. Pečarić, On some inequalities of Jensen-McShane’s type on rectangle and applications, Croatian Academy of Art and Science (Rad Hrvatske akademije znanosti i umjetnosti) 503 Book (Knjiga) LI. Mathematical Sciences (Matematicke Znanosti) (2009), 87-106.

[3] S. S. Dragomir, Bounds for the normalised Jensen functional, Bulletin of Australian Mathematical Society 74 (2006), 471-478.

[4] V. Culjak, B. Ivankovic and J. E. Pečarić, On Jensen-McShane’s inequality, Periodica Mathematica Hungarica 58(2) (2009), 139-154.

[5] S. Izumino and M. Tominaga, Estimations in Hölder’s type inequalities, Mathematical Inequalities and Applications 4 (2001), 163-187.

[6] J. B. Diaz and F. T. Metcalf, A complementary triangle inequality in Hilbert and Banach spaces, Proceedings of the American Mathematical Society 17(1966), 88-97.

[7] B. Ivankovic, S. Izumino, J. E. Pečarić and M. Tominaga, On an inequality of V. Csiszár and T. F. Möri for concave functions of two variables, Journal of Inequalities in Pure and Applied Mathematics 8(3) (2007), 10pp; Article 88.

[8] D. Mitrinovic, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer. Acad. Pub., Boston, London, 1993.

[9] E. Beck, Ein Satz über umerdnungs-ungleichungen, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 320-328, (1970), 1-14.