References

PHRAGMÈN-LINDELÖF PRINCIPLES FOR NONLINEAR ELLIPTIC EQUATIONS


[1] M. E. Amendola, L. Rossi and A. Vitolo, Harnack inequalities and ABP estimates for nonlinear second order elliptic equations in unbounded domains, Abstr. Appl. Anal., 2008, Article ID 178534, 19 pp.

[2] H. Berestycki, L. A. Caffarelli and L. Nirenberg, Inequalities for second-order elliptic equations with applications to unbounded domains I, A celebration of John F. Nash, Duke Math. J. 81(2) (1996), 467-494.

[3] H. Berestycki, L. A. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math. 50(11) (1997), 1089-1111.

[4] H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Dedicated to Ennio De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(1-2) (1998), 69-94.

[5] H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1994).

[6] J. Busca, Existence results for Bellman equations and maximum principles in unbounded domains, Comm. Partial Differential Equations 24 (1999), 2023-2042.

[7] X. Cabré, On the Alexandroff-Bakelman-Pucci estimate and reversed Hölder inequality for solutions of elliptic and parabolic equations, Comm. Pure Appl. Math. 48 (1995), 539-570.

[8] V. Cafagna and A. Vitolo, On the maximum principle for second-order elliptic operators in unbounded domains, C. R. Acad. Sci. Paris, Ser. I (2002), 334.

[9] L. A. Caffarelli, Elliptic second order equations, Rend. Semin. Mat. Fis. Milano 57 (1988), 253-284.

[10] L. A. Caffarelli and X. Cabré, Fully nonlinear elliptic equations, Amer Math. Soc. Colloq. Publ. 43, (1995).

[11] I. Capuzzo Dolcetta, Viscosity solutions Boll. Un. Mat. Ital. Sez. B Art. Ric. Mat. 4(1) (2001), 1-29.

[12] I. Capuzzo Dolcetta, F. Leoni and A. Vitolo, The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains, Comm. Partial Diff. Eqns. 30 (2005), 1863-1881.

[13] I. Capuzzo Dolcetta and A. Vitolo, A qualitative Phragmèn-Lindelöf theorem for fully nonlinear elliptic equations, Preprint (2006).

[14] I. Capuzzo Dolcetta and A. Vitolo, Local and global estimates for viscosity solutions of fully nonlinear elliptic equations, Dynamics of Continuous, Discrete and Impulsive Systems, Series A 14 S2 (2007), 11-16.

[15] M. G. Crandall, H. Ishii and P. L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27(1) (1992).

[16] D. Gilbarg, The Phragmèn-Lindelöf theorem for elliptic partial differential equations, J. Rat. Mech. Anal. 1 (1952), 411-417.

[17] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften No. 224, Springer-Verlag, Berlin-New York (1983).

[18] E. Hopf, Remark on a preceding paper of D. Gilbarg, J. Rat. Mech. Anal. 1 (1952), 419-424.

[19] S. Koike, A beginner’s guide to the theory of viscosity solutions, MSJ Memoirs 13, (2004).

[20] S. Koike and T. Takahashi, Remarks on regularity of viscosity solutions for fully nonlinear uniformly elliptic PDE’s with measurable ingredients, Adv. Differential Equations 7(4) (2002), 493-512.

[21] V. A. Kondrate’v and E. M. Landis, Qualitative theory of second order linear partial differential equations, partial differential equations III, Yu. V. Egorov and M. A. Shubin, eds., Encyclopedia of Mathematical Sciences 32 (1991), 87-192.

[22] N. V. Krylov and M. V. Safonov, An estimate on the probability that a diffusion hits a set of positive measure, Soviet Math. 20 (1979), 253-256.

[23] E. M. Landis, Second order equations of elliptic and parabolic type, Translations of Mathematical Monographs 171, (1998).

[24] K. Miller, Extremal barriers on cones with Phragmèn-Lindelöf theorems and other applications, Ann. Mat. (1971), 297-329.

[25] J. K. Oddson, Phragmèn-Lindelöf theorems for elliptic equations in the plane, Trans. Amer. Math. Soc. 145 (1969), 347-356.

[26] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, 2nd ed., Springer Berlin, 1984.

[27] N. S. Trudinger, Local estimates for sub solutions and super solutions of general second order elliptic quasilinear equations, Inv. Math. 61 (1980), 67-79.

[28] A. Vitolo, On the Phragmèn-Lindelöf principle for second-order elliptic equations, Journal of Mathematical Analysis and Applications 300(1) (2004), 244-259.

[29] A. Vitolo, A note on the maximum principle for complete second-order elliptic operators in general domains, Acta Math. Sin. 23(11) (2007), 1955-1966.