References

HOM-LIE ALGEBRAS ON STRICTLY UPPER TRIANGULAR MATRICES LIE ALGEBRA OVER A COMMUTATIVE RING: DERIVATION CASE


[1] N. Aizawa and H. Sato, q-Deformation of the Virasoro algebra with central extension, Phys. Lett. B 256 (1991), 185-190.

[2] M. Chaichian, A. P. Isaev, J. Lukierski, Z. Popowicz and P. Prenajder, q-Deformations of Virasoro algebra and conformal dimensions, Phys. Lett. B 262(1) (1991), 32-38.

[3] M. Chaichian, P. Kulish and J. Lukierski, q-Deformed Jacobi identity, q-oscillators and q-deformed infinite-dimensional algebras, Phys. Lett. B 237(3-4) (1990), 401-406.

[4] M. Chaichian, Z. Popowicz and P. Prenajder, q-Virasoro algebra and its relation to the q-deformed KdV system, Phys. Lett. B 249(1) (1990), 63-65.

[5] Y. A. Cao, Automorphisms of the Lie algebra of strictly upper triangular matrices over certain commutative rings, Linear Algebra Appl. 329 (2001), 175-187.

[6] N. Hu, q-Witt algebras, q-Lie algebras, q-holomorph structure and representations, Alg. Colloq. 6 (1999), 51-70.

[7] J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using J. Algebra 295 (2006), 314-361.

[8] Q. Q. Jin and X. C. Li, Hom-Lie algebra structures on semi-simple Lie algebras, J. Algebra 319 (2008), 1398-1408.

[9] K. Liu, Characterizations of quantum Witt algebra, Lett. Math. Phys. 24 (1992), 257-265.

[10] Y. Sheng, Representations of hom-Lie algebras, Algebra Represent Theor. 15 (2012), 1081-1098.

[11] S.-K. Ou, D.-Y. Wang and R.-P. Yao, Derivations of the Lie algebra of strictly upper triangular matrices over a commutative ring, Linear Algebra Appl. 424 (2007), 378-383.