References

LIE TRIPLE DERIVATIONS AND BOSONIC AND FERMIONIC REPRESENTATIONS FOR FILIFORM LIE ALGEBRA


[1] D. Burde, Lie algebra prederivations and strongly nilpotent Lie algebras, Comm. in Algebra 30(7) (2002), 3157-3175.

[2] H. Chen and Y. Gao, Lie algebras arising from fermionic representations, J. Algebra 308 (2007), 545-566.

[3] I. B. Frenkel, Spinor representations of affine Lie algebras, Proc. Natl. Acad. Sci. 77 (1980), 6303-6306.

[4] A. J. Feingold and I. B. Frenkel, Classical affine algebras, Adv. Math. 56 (1985), 117-172.

[5] J. R. Gómez, A. Jimenéz-Merchán and Y. Khakimdjanov, Low-dimensional filiform Lie algebras, J. Pure Applied Algebra 130 (1998), 133-158.

[6] M. Goze and Y. Khakimdjanov, Nilpotent Lie Algebra, Mathematics and its Applications, The Netherlands: Kluwer Academic Publishers, MIA 361 (1996).

[7] M. Hazewinkel, Handbook of Algebra, Vol. 2, CMI Amsterdam, 2000.

[8] P. Ji and L. Wang, Lie triple derivation of TUHF algebra, Linear Algebra Appl. 403 (2005), 399-408.

[9] A. J. Martín and C. M. González, The Banach-Lie group of Lie triple automorphisms of an Acta Math. Sci. Ser. B Engl. Ed. 30(4) (2010), 1219-1226.

[10] S. Ou, D. Wang and R. Yao, Derivations of the Lie derivation of strictly upper triangular matrices over a commutative ring, Linear Algebra Appl. 424(2-3) (2007), 378-383.

[11] M. Vergne, Cohomologie des algèbres de Lie nilpotentes, Application à l’étude de la variété des algèbres de Lie nilpotentes’, Bull. Soc. Math. 98 (1970), 81-116.

[12] D. Wang and Q. Yu, Derivations of the parabolic subalgebras of the general linear Lie algebra over a commutative ring, Linear Algebra Appl. 416(2-3) (2006), 763-774.

[13] H. Wang and Q. Li, Lie triple derivation of the Lie algebra of strictly upper triangular matrix over a commutative ring, Linear Algebra Appl. 430(1) (2009), 66-77.

[14] J. Zhang and H. Cao, Lie triple derivation of nest algebra, Linear Algebra Appl. 416(2-3) (2006), 559-567.