[1] M. Aganagic, V. Bouchard and A. Klemm, Topological strings and
(almost) modular forms, Comm. Math. Phys. 277(3) (2008), 771-819.
[2] R. E. Borcherds, Vertex algebras, Kac-Moody algebras and the
Monster, Proc. Nat. Acad. Sc. 83 (1986), 3068-3071.
[3] K. Bringmann and A. Folsom, Almost harmonic Maass forms and
Kac-Wakimoto characters, To appear in J. Reine Angew. Math.
(Crelle’s Journal), arXiv:1112.4726, 2011.
[4] T. Creutzig and A. Milas, False Theta Functions and the Verlinde
formula. arXiv: 1309.6037 (2013).
[5] T. Eguchi and Y. Sugawara, Non-holomorphic modular forms and
superconformal field theory, JHEP, March
2011, 2011:107, arXiv:1012.5721.
[6] I. B. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator
Algebras and the Monster, Pure and Appl. Math., Vol. 134, Academic
Press, Boston, 1988.
[7] D. Hurley and M. P. Tuite, Virasoro correlation functions for
vertex operator algebras, Internat. J. Math. 23(10) (2012), 1250106.
[8] M. Kaneko and D. Zaiger, A generalized Jacobi theta function and
quasimodular forms, in: The moduli space of curves (Texel Island,
1994), 165-172, Progr. Math. 129, Birkhauser Boston, Massachusetts,
1995.
[9] V. Kac, Vertex Operator Algebras for Beginners, University Lecture
Series 10, AMS, Providence, 1998.
[10] T. Gilroy and M. P. Tuite, To appear, 2014.
[11] G. Mason and M. P. Tuite, Torus chiral n-point functions for free
boson and lattice vertex operator algebras, Comm. Math. Phys. 235(1)
(2003), 47-68.
[12] G. Mason and M. P. Tuite, Vertex Operators and Modular Forms, A
Window into Zeta and Modular Physics, 183-278, Math. Sci. Res. Inst.
Publ., 57, Cambridge Univ. Press, Cambridge, 2010.
[13] J.-P. Serre, A Course in Arithmetic, Berlin: Springer-Verlag,
1978.
[14] Y. Zhu, Modular invariance of characters of vertex operator
algebras, J. Amer. Math. Soc. 9 (1996), 237-302.
[15] A. Zuevsky, Mock forms from vertex algebras, To appear (2014).
[16] S. Zwegers, PhD Thesis, Mock Theta Functions, Utrecht University,
2002.