References

EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION


[1] H. Aspe and M. C. Depassier, Evolution equation of surface waves in a convecting fluid, Phys. Rev. A 41 (1990), 3125-3128.

[2] A. J. Bernoff, Slowly varying fully nonlinear wave trains in the Ginzburg-Landau equation, Physica D 30 (1988), 363-381.

[3] E. J. Parkes and B. R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comput. Phys. Commun. 98 (1996), 288-300.

[4] A. M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Model. 40 (2004), 499-508.

[5] S. Q. Tang, Y. X. Xiao and Z. J. Wang, Travelling wave solutions for a class of nonlinear fourth order variant of a generalized Camassa-Holm equation, Appl. Math. Comput. 210 (2009), 39-47.

[6] J. B. Li, Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.

[7] S. N. Chow and J. K. Hale, Method of Bifurcation Theory, Springer-Verlag, New York, 1981.

[8] J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

[9] J. B. Li and H. H. Dai, On the Study of Singular Nonlinear Traveling Wave Equations: Dynamical System Approach, Science Press, Beijing, 2007.

[10] P. F. Byrd and M. D. Friedman, Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York, 1971.