[1] H. Aspe and M. C. Depassier, Evolution equation of surface waves
in a convecting fluid, Phys. Rev. A 41 (1990), 3125-3128.
[2] A. J. Bernoff, Slowly varying fully nonlinear wave trains in the
Ginzburg-Landau equation, Physica D 30 (1988), 363-381.
[3] E. J. Parkes and B. R. Duffy, An automated tanh-function method
for finding solitary wave solutions to non-linear evolution equations,
Comput. Phys. Commun. 98 (1996), 288-300.
[4] A. M. Wazwaz, A sine-cosine method for handling nonlinear wave
equations, Math. Comput. Model. 40 (2004), 499-508.
[5] S. Q. Tang, Y. X. Xiao and Z. J. Wang, Travelling wave solutions
for a class of nonlinear fourth order variant of a generalized
Camassa-Holm equation, Appl. Math. Comput. 210 (2009), 39-47.
[6] J. B. Li, Singular Nonlinear Travelling Wave Equations:
Bifurcations and Exact Solutions, Science Press, Beijing, 2013.
[7] S. N. Chow and J. K. Hale, Method of Bifurcation Theory,
Springer-Verlag, New York, 1981.
[8] J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations,
Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag,
New York, 1983.
[9] J. B. Li and H. H. Dai, On the Study of Singular Nonlinear
Traveling Wave Equations: Dynamical System Approach, Science Press,
Beijing, 2007.
[10] P. F. Byrd and M. D. Friedman, Elliptic Integrals for Engineers
and Scientists, Springer-Verlag, New York, 1971.