[1] P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Thinking
coherently, RISK 10(11) (1997), 68-71.
[2] P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures
of risk, Mathematical Finance 9(3) (1999), 203-228.
[3] D. Blackwell and L. E. Dubins, A converse to the dominated
convergence theorem, Illinois Journal of Mathematics 7 (1963),
508-514.
[4] D. Denneberg, Premium calculation: Why standard deviation should
be replaced by absolute deviation, ASTIN Bulletin 20 (1990),
181-190.
[5] D. Denneberg, Non-Additive Measure and Integral, Theory and
Decision Library, Series B, Vol. 27, Kluwer Academic Publishers,
1994.
[6] M. Denuit, C. L. Lefèvre and M. Shaked, The s-convex
orders among real random variables, with applications, Math.
Inequalities and their Applications 1 (1998), 585-613.
[7] L. E. Dubins and D. Gilat, On the distribution of the maxima of
martingales, Transactions of the American Mathematical Society 68
(1978), 337-338.
[8] M. J. Goovaerts, R. Kaas and J. Dhaene, Economic capital
allocation derived from risk measures, North American Actuarial
Journal 7(2) (2003), 44-56.
[9] G. H. Hardy and J. E. Littlewood, A maximal theorem with
function-theoretic applications, Acta Mathematica 54 (1930),
81-116.
[10] D. G. Hobson and J. L. Pedersen, The minimum maximum of a
continuous martingale with given initial and terminal laws, Annals of
Probability 30 (2002), 978-999.
[11] W. Hürlimann, On stop-loss order and the distortion pricing
principle, ASTIN Bulletin 28(1) (1998a), 119-134.
[12] W. Hürlimann, Inequalities for Lookback Option Strategies and
Exchange Risk Modelling, Proc. 1st Euro-Japanese Workshop on
Stochastic Risk Modelling for Insurance, Finance, Production and
Reliability (1998), Brussels, 1998b.
Available at https://sites.google.com/site/whurlimann/home
[13] W. Hürlimann, Higher degree stop-loss transforms and
stochastic orders (I): Theory, Blätter DGVM XXIV(3) (2000),
449-463.
[14] W. Hürlimann, Conditional value-at-risk bounds for compound
Poisson risks and a normal approximation, Journal of Applied
Mathematics 3(3) (2003), 141-154.
[15] W. Hürlimann, Distortion risk measures and economic capital,
North American Actuarial Journal 8(1) (2004), 86-95.
[16] W. Hürlimann, Extremal Moment Methods and Stochastic Orders -
Application in Actuarial Science, Bol. Asoc. Mat. Venez. XV, num. 1,
5-110, num. 2 (2008), 153-301.
[17] R. Kaas, A. E. van Heerwaarden and M. J. Goovaerts, Ordering of
Actuarial Risks, CAIRE Education Series 1, Brussels, 1994.
[18] R. P. Kertz and U. Rösler, Martingales with given maxima and
terminal distributions, Israel Journal of Mathematics 69 (1990),
173-192.
[19] R. P. Kertz and U. Rösler, Stochastic and convex orders and
lattices of probability measures, with a martingale interpretation,
Israel Journal of Mathematics 77 (1992), 129-164.
[20] I. Meilijson and A. NÃ das, Convex majorization with an
application to the length of critical paths, Journal of Applied
Probability 16 (1979), 671-677.
[21] L. Rüschendorf, On conditional stochastic ordering of
distributions, Advances in Applied Probability 23 (1991), 46-63.
[22] M. Shaked and J. G. Shanthikumar, Stochastic Orders and their
Applications, Academic Press, New York, 1994.
[23] S. Wang, Insurance pricing and increased limits ratemaking by
proportional hazards transforms, Insurance: Mathematics and Economics
17 (1995), 43-54.
[24] S. Wang, Premium calculation by transforming the layer premium
density, ASTIN Bulletin 26 (1996), 71-92.
[25] S. Wang, An actuarial index of the right-tail index, North
American Actuarial Journal 2(2) (1998), 88-101.
[26] S. Wang, A Risk Measure that Goes Beyond Coherence, 12th Int.
AFIR Colloq., Cancun, 2002.
URL:
http://www.actuaries.org/EVENTS/Congresses/Cancun/afir_subject/afir_14
_wang.htm
[27] S. Wang, V. R. Young and H. H. Panjer, Axiomatic characterization
of insurance prices, Insurance: Mathematics and Economics 21 (1997),
173-183.
[28] J. L. Wirch and M. R. Hardy, A synthesis of risk measures for
capital adequacy, Insurance: Mathematics and Economics 25 (1999),
337-347.
[29] T. Yoshiba and Y. Yamai, Comparative analyses of expected
shortfall and value-at-risk (2): Expected utility maximization and
tail risk, Working paper, Bank of Japan, Tokyo, 2001.
Available at www.gloria-mundi.com/