References

ON THE GENERALIZED VISCOSITY SOLUTIONS OF FULLY NONLINEAR PARABOLIC EQUATIONS


[1] H. A. Biagioni and J. F. Colombeau, New generalized functions and functions with values in generalized complex numbers, J. London. Math. Soc. 33(2) (1986), 169-179.

[2] H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pure Appl. 62 (1983), 73-97.

[3] L. A. Caffarelli, Interior estimates for fully nonlinear equations, Ann. of Math 130(2) (1989), 189-213.

[4] J. F. Colombeau and M. Langlais, Generalized solutions of nonlinear equations with distributions as initial conditions, J. Math. Ana. Appl. 145(1) (1990), 186-196

[5] J. F. Colombeau, New Generalized Functions and Multiplication of Distributions, North-Holland Mathematics Studies 84, Amsterdam, North Holland 1984.

[6] M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42.

[7] I. Dolcetta and P. Lions, Viscosity Solutions and Applications, Springer 1995.

[8] M. Grosser, M. Kunzinger, M. Oberguggenberger and R. Steinbauer, Geometric Theory of Generalized Functions with Applications to General Relativity, Springer Series Mathematics and its Applications 537 (2002).

[9] E. O. Ifidon and E. O. Oghre, Generalized solutions to nonlinear parabolic equations, J. Nig. Math. Phys. Assoc. 3(1999), 222-233.

[10] N. Y. Krylov, Controlled diffusion process, Applications of Mathematics, 14, Springer-Verlag, Berlin and New York, 1980.

[11] N. V. Krylov, On the Maximum principle for nonlinear parabolic and elliptic equations, Izv. Akad. Nauk SSSR Ser. Mat. 44(1) (1980), 161-175.

[12] M. Nedeljkov, S. Pilipovic and D. Scarpalezos, The Linear Theory of Colombeau Generalized Functions, CRC, Boca Raton, 1999.

[13] M. Oberguggenberger, M. Grosser and M. Kunzinger, Nonlinear Theory of Generalized Functions, CRC, Boca Raton, 1999.

[14] M. Oberguggenberger, Generalized solutions to semilinear hyperbolic systems, Monatshe. Math. 103 (1987), 133-144.

[15] E. E. Rosinger, Generalized Solutions to Nonlinear PDE, Amsterdam, North-Holland 1987.

[16] Lithe Wang, On the regularity theory of fully nonlinear parabolic equations, J. Amer. Math. Soc. 22 (1990), 107-113.