[1] C. Becker, J. H. Ferziger, M. Peric and G. Scheuerer, Finite
volume multigrid solutions of the two-dimensional incompressible
Navier-Stokes equations, Robust Multigrid Methods, Notes on Numerical
Fluid Mechanics, Vol. 23, pp. 37-47 Vieweg, Braunschweig, 1988.
[2] M. Benzi and M. Tuma, A sparse approximate inverse preconditioner
for nonsymmetric linear systems, SIAM J. Sci. Comput. 19(3) (1998),
968-994.
[3] M. Benzi and M. Tuma, A comparative study of sparse approximate
inverse preconditioners, Appl. Numer. Math. 30 (1999), 305-340.
[4] M. Benzi, Preconditioning techniques for large linear systems: a
survey, J. Comput. Phys. 182 (2002), 418-477.
[5] M. Bollhöffer and Y. Saad, On the relations between ILUs and
factored approximate inverses, SIAM J. Matrix Anal. Appl. 24(1)
(2002), 219-237.
[6] G. Beylkin, R. Coifman, and V. Rokhlin, Fast wavelet transforms
and numerical algorithms I, Comm. Pure Appl Math. 44 (1991),
141-183.
[7] W. L. Briggs, S. F. McCormick, and V. E. Henson, A Multigrid
Tutorial, Second Edition, SIAM, Philadelphia, PA, 2000.
[8] W. Dahmen and L. Elsner, Algebraic multigrid methods and the Schur
complement, Robust Multi-Grid Methods (Kiel, 1988), Notes on
Numerical Fluid Mechanics, Vol. 23, pp. 58-68, Vieweg, Braunschweig,
1989.
[9] I. Daubechies, Orthonormal bases of compactly supported wavelets,
Comm. Pure Appl. Math., XLI, (7) (1988), 909-996.
[10] I. Daubechies, Ten Lectures on Wavelets, volume 61 of CBMS-NSF
Series in Applied Mathematics SIAM, Philadelphia, PA, 1992.
[11] D. De Leon, Wavelet operators applied to multigrid methods (Ph.
D. thesis), UCLA Mathematics Department CAM Report 00-22, June
2000.
[12] D. De Leon, A new wavelet multigrid method, J. Comput. Appl.
Math. 220 (2008), 674-685.
[13] R. Jyotsna and S. P Vanka, A pressure based multigrid procedure
for the Navier-Stokes equations on unstructured grids, Proceedings of
the Seventh Copper Mountain Conference on Multigrid Methods, 1995.
[14] S. McCormick, Multigrid Methods, Frontiers in Applied
Mathematics, SIAM, Philadelphia, PA, 1987.
[15] J. D. Moulton, J. E. Dendy Jr. and J. M. Hyman. The black box
multigrid numerical homogenization algorithm. J. Comput. Phys. 142
(1998), 80-108.
[16] S. V. Patankar and D. B. Spalding, A calculation procedure for
heat, mass and momentum transfer in three-dimensional parabolic flows
Internat. J. Heat Mass Transfer 15 (1972), 1787-1806.
[17] S. V. Patankar, A calculation procedure for two-dimensional
elliptic situations, Numer. Heat Transfer 4 (1981), 409-425.
[18] M. Pernice, A hybrid multigrid method for the steady-state
incompressible Navier-Stokes equations, Electron. Trans. Numer. Anal.
10 (2000), 74-91.
[19] M. Pernice and M. D. Tocci, A multigrid-preconditioned
Newton-Krylov method for the incompressible Navier-Stokes equations,
SIAM J. Sci. Comput. 23(2) (2001), 398-418.
[20] J. W. Ruge and K. Stüben, Algebraic multigrid, Multigrid
Methods, Frontiers in Applied Mathematics, SIAM, Philadelphia, PA,
1987, pp. 73-130.
[21] A. Schüller, A multigrid algorithm for the incompressible
Navier-Stokes equations, Numerical Methods for Advection-Diffusion
Problems (Kiel, 1989), volume 30 of Notes on Numerical Fluid
Mechanics, pp. 124-133, Vieweg, Braunschweig, 1990.
[22] K. Stüben, Algebraic multigrid (AMG): an introduction with
applications, Technical Report 70, GMD, November 1999.
[23] Syamsudhuha and D. J. Silvester, Efficient solution of the steady
state Navier-Stokes equations using a multigrid preconditioned
Newton-Krylov method, Int. J. Numer. Meth. Fluids 43 (2003),
1407-1427.
[24] Roger Temam, Navier-Stokes Equations: Theory and Numerical
Analysis, 3rd ed., Studies in Mathematics and its Applications, Vol.
2, North-Holland, New York, 1984.
[25] U. Trottenberg, C. W. Oosterlee and A. Schüller, Multigrid,
Academic Press, London, 2001.
[26] R. Webster, An algebraic multigrid solver for Navier-Stokes
problems, Int. J. Numer. Meth. Fluids 18(8) (1994), 761-780.
[27] R. Webster, An algebraic multigrid solver for Navier-Stokes
problems in the discrete second order approximation, Int. J. Numer.
Meth. Fluids 22(11) (1996), 1103-1123.
[28] A. Yu. Yeremin and A. A. Nikishin, Factorized-sparse-approximate
inverse preconditionings of linear systems with unsymmetric matrices,
J. Math. Sci. 121(4) (2004), 2248-2257.