[1] J. Bourgain, New Global Well-posedness Resuts for Nonlinear
Schrödinger Equations, AMS Publications, (1999).
[2] X. Carvajal and F. Linares, A higher order nonlinear
Schrödinger equation with variable coefficients, Differential and
Integral Equations 16 (2003), 1111-1130.
[3] X. Carvajal, Sharp global well-posedness for a higher order
Schrödinger equation, J. Fourier Anal. Appl. 12 (2006), 53-70.
[4] T. Cazenave and F. Weissler, The Cauchy problem for the critical
nonlinear Schrödinger equations in Nonlinear Analysis TMA 14 (1990),
807-836.
[5] P. A. Clarson and C. M. Cosgrove, Painlevé analysis of the
non-linear Schrödinger family of equations, Journal of Physics A:
Math. and Gen. 20 (1987), 2003-2024.
[6] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Global well-posedness for Schrödinger equations with derivative,
SIAM J. Math. Anal. 33 (2001), 649-669.
[7] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, A
refined global well-posedness result for Schrödinger equations with
derivative, SIAM J. Math. Anal. 34 (2002), 64-86.
[8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Sharp global well-posedness for periodic and nonperiodic KdV and mKdV,
J. Amer. Math. Soc. 16 (2003), 705-749.
[9] G. Fonseca, F. Linares and G. Ponce, Global well-posedness for the
modified Korteweg-de Vries equation, Comm. PDE 24 (1999), 683-705.
[10] G. Fonseca, F. Linares and G. Ponce, Global existence for the
critical generalized KdV equation, Proc. Amer. Math. Soc. 131 (2003),
1847-1855.
[11] J. Ginibre and G. Velo, Scattering theory in the energy space for
a class of nonlinear Schrödinger equation , J. Math. Pure. Appl. 64
(1985), 363-401.
[12] E. M. Gromov, V. V. Tyutin and D. E. Vorontzov, Short vector
solitons, Physics Letters A 287 (2001), 233-239.
[13] A. Hasegawa and Y. Kodama, Nonlinear pulse propagation in a
monomode dielectric guide, IEEE Journal of Quantum Electronics 23
(1987), 510-524.
[14] C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and
regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991),
33-69.
[15] C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering
results for the generalized Korteweg-de Vries equation via the
contraction principle, Comm. Pure Appl. Math. 46 (1993), 527-620.
[16] Y. Kodama, Optical solitons in a monomode fiber, J. Statist.
Phys. 39 (1985), 597-614.
[17] C. Laurey, The Cauchy problem for a third order nonlinear
Schrödinger equation, Nonlinear Analysis TMA 29 (1997), 121-158
[18] T. Ozawa, On the nonlinear Schrödinger equations of derivative
type, Indiana Univ. Math. J. 45 (1996), 137-163.
[19] T. Osawa and Y. Tsutsumi, Space-time estimates for null gauge
forms and nonlinear Schrödinger equations, Differential Integral
Equations 11 (1998), 201-222.
[20] K. Porsezian and K. Nakkeeran, Singularity Structure Analysis and
Complete Integrability of the Higher Order Nonlinear Schrödinger
equations, Chaos, Solitons and Fractals (1996), 377-382.
[21] K. Porsezian, P. Shanmugha, K. Sundaram and A. Mahalingam, Phys.
Rev. 50E, 1543 (1994).
[22] G. Staffilani, On the generalized Korteweg-de Vries-type
equations, Differential and Integral Equations 10 (1997), 777-796.
[23] C. Sulem and P. L. Sulem, The nonlinear Schrödinger equation:
sel-focusing and wave collapse, Applied Mathematical Scienses,
Springer Verlag 139 (1999), 350 pages.
[24] H. Takaoka, Well-posedness for the one dimensional Schrödinger
equation with the derivative nonlinearity, Adv. Diff. Eq. 4 (1999),
561-680.
[25] Y. Tsutsumi, solutions for nonlinear Schrödinger
equations and nonlinear groups, Funkcial. Ekvac. 30 (1987),
115-125.
[26] H. Wang, Global well-posedness of the Cauchy problem of a
higher-order Schrödinger equation, Electron. J. Diff. Eqns. 4
(2007), 1-11.