[1] A. M. Martnez and A. C. Kak, PCA versus LDA, IEEE Trans. Pattern
Anal. Mach. Intell. 23 (2001), 228-233.
[2] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, A. J. Smola and K. R.
Muller, Constructing descriptive and discriminative nonlinear
features: Rayleigh coefficients in kernel feature spaces, IEEE Trans.
Pattern Anal. Mach. Intell. 25 (2003), 623-628.
[3] T. Hastie, R. Tibshirani and J. H. Friedman, The Elements of
Statistical Learning: Data Mining, Inference, and Prediction,
Springer, 2001.
[4] M. Loog, R. P. W. Duin and R. Hacb-Umbach, Multiclass linear
dimension reduction by weighted pairwise Fisher criteria, Pattern
Recognition and Machine Intelligence 23 (2001), 762-766.
[5] H. M. Lec, C. M. Chen and Y. L. Jou, An efficient fuzzy classifier
with feature selection based on fuzzy entropy, IEEE Transactions on
Systems, Man, and Cybernetics B 31(3) (2001), 426-432.
[6] D. L. Swets and J. Weng, Using discriminant eigenfeatures for
image retrieval, IEEE Trans. Pattern Anal. Mach. Intell. 18(8) (1996),
831-836.
[7] V. Belhumeur, J. Hespanha and D. Kriegman, Eigenfaces vs
Fisherfaces: Recognition using class specific linear projection, IEEE
Trans. Pattern Anal. Mach. Intell. 19(7) (1997), 711-720.
[8] J. Yang and J. Y. Yang, Why can LDA be performed in PCA
transformed space? Pattern Recog. 36(2) (2003), 563-566.
[9] J. Ye and Q. Li, LDA/QR: An efficient and effective dimension
reduction algorithm and its theoretical foundation, Pattern Recog. 37
(2004), 851-854.
[10] J. Gao and L. Fan, The impact on the classification results from
distances in weighted PCA and LDA (in Chinese), Journal of Liaocheng
University (Natural Science) 23(4) (2010), 4-8.
[11] J. Gao and L. Fan, The impact on the face recognition from
distances in fuzzy linear discriminant analysis (in Chinese), Journal
of Jinggangshan University (Natural Science) 33(3) (2012), 1-7.
[12] J. Gao, L. Fan and L. Xu, Solving the face recognition problem
using QR factorization, WSEAS Transactions on Mathematics 8(11)
(2012), 728-737.
[13] J. Gao, L. Fan and L. Xu, Median null (Sw)-based method for face
feature recognition, Applied Mathematics and Computation 219 (2013),
6410-6419.
[14] V. N. Vapnik, Statistical Learning Theory, Wiley, New York,
1998.
[15] B. Scholkopf, A. J. Smola and K.-R. Muller, Nonlinear component
analysis as a kernel eigenvalue problem, Neural Comp. 10 (1998),
1299-1319.
[16] Y. Y. Liu, X. P. Liu and Z. X. Su, A new fuzzy approach for
handing class labels in canonical correlation analysis, Neural Comp.
71 (2008), 1735-1740.
[17] S. Mika, G. Ratsch, J. Weston, B. Scholkopf and K. R. Muller,
Fisher discriminant analysis with kernels, In: Proceedings of IEEE
International Workshop Neural Networks for Signal Processing IX
(1999), 41-48.
[18] J. Yang, A. F. Frangi, J. Y. Yang and D. Zhang, KPCA plus LDA: A
complete kernel Fisher discriminant framework for feature extraction
and recognition, IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005),
230-244.
[19] G. Dai, Y. T. Qian and S. Jia, A kernel fractional-step nonlinear
discriminant analysis for pattern recognition, In: Proceedings of the
18th International Conference on Pattern Recognition (2004),
431-434.
[20] G. Dai, D. Y. Yeung and Y. T. Qian, Face recognition using a
kernel fractional-step discriminant analysis algorithm, Pattern Recog.
40 (2007), 222-243.
[21] D. Zhou and Z. Tang, Kernel-based improve discriminant analysis
and its applications to faces recognition, Soft Comp. 14 (2010),
102-111.
[22] D. Zhou and Z. Tang, A modification of kernel discriminant
analysis for high-dimensional data-with application to face
recognition, Signal Processing 90 (2010), 2423-2430.
[23] R. Lotlikar and R. Kothari, Fractional-step dimension reduction,
IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000), 623-627.
[24] L. A. Zadeh, Fuzzy sets, Information Control 8 (1965),
338-353.
[25] K. C. Kwak and W. Pedrycz, Face recognition using a fuzzy
Fisher-face classifier, Pattern Recog. 38(10) (2005), 1717-1732.
[26] J. Gao and L. Fan, Kernel-based weighted discriminant analysis
with QR decomposition and its application to face recognition, WSEAS
Transactions on Mathematics 10(10) (2011), 358-367.