References

ROTATIONALLY SYMMETRIC HARMONIC DIFFEOMORPHISMS IN PLANE


[1] K. Akutagawa, Harmonic diffeomorphisms of the hyperbolic plane, Trans. Amer. Math. Soc. 342(1) (1994), 325-342.

[2] K. Akutagawa and S. Nishikawa, The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski 3-space, Tohoku Math. J. (2) 42(1) (1990), 67-82.

[3] L. Chen, S.-Z. Du and X.-Q. Fan, Rotationally symmetric harmonic diffeomorphisms between surfaces, Abstr. Appl. Anal. (2013), Article ID 512383.

http:dx.doi.org/10.1155/2013/512383

[4] L. Chen, S.-Z. Du and X.-Q. Fan, Harmonic diffeomorphisms between the annuli with rotational symmetry, Nonlinear Anal. 101 (2014), 144-150; Addendum to “Harmonic diffeomorphisms between the annuli with rotational symmetry” [Nonlinear Anal. 101 (2014), 144-150], Nonlinear Anal. 105 (2014), 1-2.

[5] Johannes C. C. Nitsche, On the module of doubly-connected regions under harmonic mappings, Amer. Math. Soc. Monthly 69(8) (1962), 781-782.

[6] L. F. Cheung and C. K. Law, An initial value approach to rotationally symmetric harmonic maps, J. Math. Anal. Appl. 289(1) (2004), 1-13.

[7] F. Hélein, Harmonic diffeomorphisms with rotational symmetry, J. Reine Angew. Math. 414 (1991), 45-49.

[8] D. Kalaj, On the Nitsche conjecture for harmonic mappings in and Israel J. Math. 150 (2005), 241-251.

[9] M. Leguil and H. Rosenberg, On harmonic diffeomorphisms from conformal annuli to Riemannian annuli, Prepront.

[10] A. Ratto and M. Rigoli, On the asymptotic behaviour of rotationally symmetric harmonic maps, J. Differential Equations 101(1) (1993), 15-27.

[11] R. M. Schoen, The role of harmonic mappings in rigidity and deformation problems, Complex Geometry (Osaka, 1990), 179-200; Lecture Notes in Pure and Appl. Math. 143, Dekker, New York, 1993.

[12] A. Tachikawa, Rotationally symmetric harmonic maps from a ball into a warped product manifold, Manuscripta Math. 53(3) (1985), 235-254.

[13] A. Tachikawa, A nonexistence result for harmonic mappings from into Tokyo J. Math. 11(2) (1988), 311-316.

[14] T. Iwaniec, L. V. Kovalev and J. Onninen, The Nitsche conjecture, J. Amer. Math. Soc. 24(2) (2011), 345-373.