References

THE STOPPED SIMPLEX ALGORITHM FOR INTEGER LINEAR PROGRAMS WITH SPECIAL CUTS


[1] T. Achterberg, T. Koch and A. Martin, Branching rules revisited, Operations Research Letters 33 (2005), 42-54.

[2] E. Balas, S. Ceria, G. Cornuejols and N. Natraj, Gomory cuts revisited, Operations Research Letters 19 (1996), 1-9.

[3] E. A. Boyd, Fenchel cutting planes for integer programs, Operations Research 42 (1994), 53-64.

[4] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, 1963.

[5] J. Eckstein and M. Nediak, Depth-optimized convexity cuts, Annals of Operations Research 139 (2005), 95-129.

[6] P. W. Gao, An efficient bound-and-stopped algorithm for integer linear programs on the objective function hyperplane, Applied Mathematics and Computation 185 (2007), 301-311.

[7] A. Joseph, S. I. Gass and N. A. Bryson, A computational study of an objective hyperplane search heuristic for the general integer linear programming problem. Mathematical and Computer Modeling 25 (10) (1997), 63-76.

[8] A. Joseph, S. I. Gass and N. A. Bryson, An objective hyperplane search procedure for solving the general all-integer linear programming problem, European Journal of Operational Research 104 (1998), 601-614.

[9] A. N. Letchford, Binary clutter inequalities for integer programs, Mathematical Programming (Ser.B) 98 (2003), 201-221.

[10] G. L. Thompson, The stopped simplex method: Basic theory for mixed integer programming; integer programming, Revue Francaise de Recherche Operationnelle 8 (1964), 159-182.