[1] T. Achterberg, T. Koch and A. Martin, Branching rules revisited,
Operations Research Letters 33 (2005), 42-54.
[2] E. Balas, S. Ceria, G. Cornuejols and N. Natraj, Gomory cuts
revisited, Operations Research Letters 19 (1996), 1-9.
[3] E. A. Boyd, Fenchel cutting planes for integer programs,
Operations Research 42 (1994), 53-64.
[4] G. B. Dantzig, Linear Programming and Extensions, Princeton
University Press, 1963.
[5] J. Eckstein and M. Nediak, Depth-optimized convexity cuts, Annals
of Operations Research 139 (2005), 95-129.
[6] P. W. Gao, An efficient bound-and-stopped algorithm for integer
linear programs on the objective function hyperplane, Applied
Mathematics and Computation 185 (2007), 301-311.
[7] A. Joseph, S. I. Gass and N. A. Bryson, A computational study of
an objective hyperplane search heuristic for the general integer
linear programming problem. Mathematical and Computer Modeling 25
(10) (1997), 63-76.
[8] A. Joseph, S. I. Gass and N. A. Bryson, An objective hyperplane
search procedure for solving the general all-integer linear
programming problem, European Journal of Operational Research 104
(1998), 601-614.
[9] A. N. Letchford, Binary clutter inequalities for integer programs,
Mathematical Programming (Ser.B) 98 (2003), 201-221.
[10] G. L. Thompson, The stopped simplex method: Basic theory for
mixed integer programming; integer programming, Revue Francaise de
Recherche Operationnelle 8 (1964), 159-182.