References

PRINCIPLE HEISENBERG SUBALGEBRA IN A QUANTUM GROUP


[1] V. Chari and A. Pressley, A Guide for Quantum Groups, Cambridge University Press, 1994.

[2] T. L. Curtright and C. K. Zachos, Phys. Lett. B243 (1990), 237-244.

[3] V. G. Drinfeld, Sov. Math. Dokl. 32 (1985), 254.

[4] L. A. Ferreira, J.-L. Gervais, J. S. Guillen and M. V. Saveliev, Nuclear Phys. B 470 (1996), 1-2.

[5] M. Jimbo, Lett. Math. Phys. 10 (1985), 63.

[6] V. G. Kac, Infinite Dimensional Lie Algebras, Third Edition, Cambridge University Press, Cambridge, 1990.

[7] V. G. Kac, Vertex Operator Algebras for Beginners, University Lecture Series 10, AMS, Providence, 1998.

[8] A. N. Leznov and M. V. Saveliev, Group-Theoretical Methods for Integration of Non-Linear Dynamical Systems, Progress in Physics Series, Volume 15, Birkhauser-Verlag, Basel, 1992.

[9] H. Li, Int. J. Math. 17 (2007).

[10] P. Mansfield, Nucl. Phys. B 222 (1983).

[11] D. I. Olive, N. Turok and J. W. R. Underwood, Nucl. Phys. B401 (1993).

[12] M. V. Saveliev and A. B. Zuevsky, Internat. J. Modern Phys. A 15 (2000), 24.