[1] C. Brezinski, Computational Aspects of Linear Control, Kluwer
Academic Publishers, 2002.
[2] M. Dosso, Sur quelques algorithms d’analyse de stabilité
forte de matrices symplectiques, PHD Thesis (September 2006),
Université de Bretagne Occidentale. Ecole Doctorale SMIS,
Laboratoire de Mathématiques, UFR Sciences et Techniques.
[3] M. Dosso and M. Sadkane, A spectral trichotomy method for
symplectic matrices, Numer. Algor. 52 (2009), 187-212.
[4] M. Dosso and M. Sadkane, On the strongly stable of symplectic
matrices, Numerical Linear Algebra with Applications 20(2) (2013),
234-249.
[5] M. Dosso, N. Coulibaly and L. Samassi, Strong stability of
symplectic matrices using a spectral dichotomy method, Far East
Journal Applied Mathematics 79(2) (2013), 73-110.
[6] S. K. Godunov, Ordinary differential equations with constant
coefficient, American Mathematical Soc. 1 janv. (1997), 282.
[7] S. K. Godunov, Stability of iterations of symplectic
transformations, Siberian Math. J. 30 (1989), 54-63.
[8] S. K. Godunov and M. Sadkane, Numerical determination of a
canonical from of a symplectic matrix, Siberian Math. J. 42 (2001),
629-647.
[9] S. K. Godunov and M. Sadkane, Some new algorithms for the spectral
dichotomy methods, Linear Algebra Appl. 358 (2003), 173-194.
[10] S. K. Godunov and M. Sadkane, Spectral analysis of symplectic
matrices with application to the theory of parametric resonance, SIAM
J. Matrix Anal. Appl. 28 (2006), 1083-1096.
[11] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd Edition,
The Johns Hopkins University Press, Baltimore, MD, 1989.
[12] B. Hassibi, A. H. Sayed and T. Kailath, Indefinite-Quadratic
Estimation and Control, SIAM, Philadelphia, PA, 1999.
[13] P. Lancaster and L. Rodman, Algebraic Riccati Equations,
Clarendon Press, 1995.
[14] V. A. Yakubovich and V. M. Starzhinskii, Linear Differential
Equations with Periodic Coefficients, Vols. 1-2, Wiley, New York,
1975.