References

SYMPLECTIC MATRICES AND STRONG STABILITY OF HAMILTONIAN SYSTEMS WITH PERIODIC COEFFICIENTS


[1] C. Brezinski, Computational Aspects of Linear Control, Kluwer Academic Publishers, 2002.

[2] M. Dosso, Sur quelques algorithms d’analyse de stabilité forte de matrices symplectiques, PHD Thesis (September 2006), Université de Bretagne Occidentale. Ecole Doctorale SMIS, Laboratoire de Mathématiques, UFR Sciences et Techniques.

[3] M. Dosso and M. Sadkane, A spectral trichotomy method for symplectic matrices, Numer. Algor. 52 (2009), 187-212.

[4] M. Dosso and M. Sadkane, On the strongly stable of symplectic matrices, Numerical Linear Algebra with Applications 20(2) (2013), 234-249.

[5] M. Dosso, N. Coulibaly and L. Samassi, Strong stability of symplectic matrices using a spectral dichotomy method, Far East Journal Applied Mathematics 79(2) (2013), 73-110.

[6] S. K. Godunov, Ordinary differential equations with constant coefficient, American Mathematical Soc. 1 janv. (1997), 282.

[7] S. K. Godunov, Stability of iterations of symplectic transformations, Siberian Math. J. 30 (1989), 54-63.

[8] S. K. Godunov and M. Sadkane, Numerical determination of a canonical from of a symplectic matrix, Siberian Math. J. 42 (2001), 629-647.

[9] S. K. Godunov and M. Sadkane, Some new algorithms for the spectral dichotomy methods, Linear Algebra Appl. 358 (2003), 173-194.

[10] S. K. Godunov and M. Sadkane, Spectral analysis of symplectic matrices with application to the theory of parametric resonance, SIAM J. Matrix Anal. Appl. 28 (2006), 1083-1096.

[11] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd Edition, The Johns Hopkins University Press, Baltimore, MD, 1989.

[12] B. Hassibi, A. H. Sayed and T. Kailath, Indefinite-Quadratic Estimation and Control, SIAM, Philadelphia, PA, 1999.

[13] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Clarendon Press, 1995.

[14] V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients, Vols. 1-2, Wiley, New York, 1975.