References

A KRASNOSELSKII-TYPE ALGORITHM FOR APPROXIMATING A COMMON FIXED POINT OF A FINITE FAMILY OF MULTIVALUED STRICTLY PSEUDO CONTRACTIVE MAPPINGS IN HILBERT SPACES


[1] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228.

[2] L. E. J. Brouwer, Uber Abbildung von Mannigfaltigkeiten, Mathematische Annalen 71(4) (1912), 598.

[3] S. Kakutani, A generalization of Brouwers fixed point theorem, Duke Mathematical Journal 8(3) (1941), 457-459.

[4] D. Downing and W. A. Kirk, Fixed point theorems for set-valued mappings in metric and Banach spaces, Math. Japon. 22(1) (1977), 99-112.

[5] B. Martinet, Regularisation d’inéquations variationelles par approximations successives, Revue Francaise d’Automatique et d’Informatique Recherche Opérationnelle 4 (1970), 154-159.

[6] G. J. Minty, Monotone (nonlinear) operator in Hilbert space, Duke Math. 29 (1962), 341-346.

[7] J. F. Nash, Non-coperative games, Annals of Mathematics, Second Series 54 (1951), 286-295.

[8] J. F. Nash, Equilibrium points in n-person games, Proceedings of the National Academy of Sciences of the United States of America 36(1) (1950), 48-49.

[9] A. F. Filippov, Differential equations with discontinuous right-hand side, Matem. Sbornik 5 (1960), 99-127; English Trans. in Amer. Math. Translations 42 (1964), 199-231.

[10] R. T. Rockafellar, Monotone operator and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), 877-898.

[11] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88.

[12] N. Djitte, M. Sene and D. Sow, Convergence theorems for fixed points of multivalued mappings in Hilbert spaces, to appear.

[13] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.

[14] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.

[15] K. C. Chang, The obstacle problem and partial differential equations with discontinuous nonlinearities, Comm. Pure Appl. Math. 33 (1980), 117-146.

[16] L. Erbe and W. Krawcewicz, Existence of solutions to boundary value problems for impulsive second order differential inclusions, Rocky Mountain J. Math. 22(2) (1992), 519-539.

[17] J. Geanakoplos, Nash and Walras equilibrium via Brouwer, Economic Theory 21 (2003), 585-603.

[18] N. Shahzad and H. Zegeye, On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces, Nonlinear Analysis 71 (2009), 838-844.

[19] Y. Song and Y. J. Cho, Some notes on Ishikawa iteration for multi-valued mappings, Bull. Korean. Math. Soc. 48(3) (2011), 575-584; doi:10.4134/BKMS.2011.48.3.575.

[20] S. B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488.

[21] R. A. Rashwan and S. M. Altwqi, One-step iterative scheme for approximating common fixed points of three multivalued nonexpansive mappings, Bulletin of International Mathematical Virtual Institute, SSN 1840-4367 2 (2012), 77-86.

[22] M. Frigon, A. Granas and Z. Guennoun, A note on the Cauchy problem for differential inclusions, Topol. Meth. Nonlinear Anal. 1 (1993), 315-321.

[23] K. Deimling, Multivalued Differential Equations, W. De Gruyter, 1992.

[24] Jinsheng Xiao and Lelin Sun, An iterative algorithm for maximal monotone multivalued operator equations, Acta Math. Sci. Ser. B Engl. Ed. 21(2) (2001), 152-158.

[25] Charles Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, Springer Verlag Series: Lecture Notes in Mathematics, Vol. 1965, (2009), ISBN 978-1-84882-189-7.

[26] C. E. Chidume, C. O. Chidume, N. Djitte and M. S. Minjibir, Convergence theorems for fixed points of multi-valued strictly pseudo-contractive mappings in Hilbert Spaces, to appear (2012).

[27] C. E. Chidume, C. O. Chidume, N. Djitte and M. S. Minjibir, Krasnoselskii-type algorithm for fixed points of multi-valued strictly pseudo-contractive mappings, Fixed Point Theory and Applications 2013, (2013), 58.

[28] K. P. R. Sastry and G. V. R. Babu, Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point, Czechoslovak Math. J. 55 (2005), 817-826.

[29] B. Panyanak, Mann and Ishikawa, Iteration processes for multi-valued mappings in Banach spaces, Comput. Math. Appl. 54 (2007), 872-877.

[30] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II: Function Spaces, Ergebnisse Math. Grenzgebiete Bd. 97, Springer-Verlag, Berlin, 1979.

[31] Y. Song and H. Wang, Erratum to Mann and Ishikawa iterative processes for multi-valued mappings in Banach spaces [Comput. Math. Appl. 54 (2007), 872-877]; Comput. Math. Appl. 55 (2008), 2999-3002.

[32] S. H. Khan, I. Yildirim and B. E. Rhoades, A one-step iterative scheme for two multi-valued nonexpansive mappings in Banach spaces, Comput. Math. Appl. 61 (2011), 3172-3178.

[33] M. Abbas, S. H. Khan, A. R. Khan and R. P. Agarwal, Common fixed points of two multi-valued nonexpansive mappings by one-step iterative scheme, Appl. Math. Letters 24 (2011), 97-102.

[34] J. Garcia-Falset, E. Lorens-Fuster and T. Suzuki, Fixed point theory for a class of generalised nonexpansive mappings, J. Math. Anal. Appl. 375 (2011), 185-195.

[35] Safeer Hussain Khan and Isa Yildirim, Fixed points of multivalued nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications 2012, (2012), 73; doi:10.1186/1687-1812-2012-73.

[36] M. A. Krasnosel’skiĭ, Two observations about the method of successive approximations, Usp. Math. Nauk. 10 (1955), 123-127.

[37] W. R. Mann, Mean value methods in iterations, Proc. Amer. Math. Soc. 4 (1953), 506-510.

[38] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16(12) (1991), 1127-1138.