[1] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Conformal
Invariants, Inequalities and Quasiconformal Maps, John Wiley & Sons,
New York, 1997.
[2] H. P. Boas, Julius and Julia: Mastering the art of the Schwartz
lemma, Amer. Math. Monthly 117 (2010), 770-785.
[3] F. W. Gehring and B. G. Osgood, Uniform domains and the
quasi-hyperbolic metric, J. d’Analyse Math. 36 (1979),
50-74.
[4] F. W. Gehring and B. P. Palka, Quasiconformally homogeneous
domains, J. d’Analyse Math. 30 (1976), 172-199.
[5] P. Hästö, Z. Ibragimov, D. Minda, S. Ponnusamy and S. K.
Sahoo, Isometries of some hyperbolic-type path metrics, and the
hyperbolic medial axis, In the tradition of Ahlfors-Bers, IV,
Contemporary Math. 432 (2007), 63-74.
[6] M. Huang, S. Ponnusamy, H. Wang and X. Wang, A cosine inequality
in the hyperbolic geometry, Appl. Math. Lett. 23(8) (2010),
887-891.
[7] R. Klén, M. Vuorinen and X. Zhang, Quasihyperbolic metric and
Möbius transformations, Manuscript 9pp, arXiv: 1108.2967math.CV.
[8] R. Klén and M. Vuorinen, Inclusion relations of hyperbolic type
metric balls, Publ. Math. Debrecen 81(3-4) (2012), 289-311.
[9] J. Väisälä, The free quasiworld. Freely quasiconformal
and related maps in Banach spaces. Quasiconformal geometry and
dynamics, (Lublin, 1996), 55-118, Banach Center Publ., 48, Polish
Acad. Sci., Warsaw, 1999.
[10] M. Vuorinen, Conformal invariants and quasiregular mappings, J.
d’Analyse Math. 45 (1985), 69-115.
[11] M. Vuorinen, Conformal Geometry and Quasiregular Mappings,
Lecture Notes in Math. 1319, Springer-Verlag, Berlin-Heidelberg,
1988.
[12] S. Simic, Lipschitz continuity of the distance ratio metric on
the unit disk, Filomat 27(8), 2013.