References

NORMAL VARIANCE-MEAN MIXTURES (III) OPTION PRICING THROUGH STATE-PRICE DEFLATORS


[1] C. Alexander and A. Venkatramanan, Analytical approximations for multi-asset option pricing, Mathematical Finance 22(4) (2012), 667-689.

[2] K. Arrow, An Extension of the Basic Theorems of Classical Welfare Economics, In: Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, pp. 507-532, University of California Press, 1951.

[3] K. Arrow, Le role des valeurs boursières pour la répartition la meilleure des risques, Econometrica 40 (1953), 41-47 (English translation by Arrow (1964)).

[4] K. Arrow, The role of securities in the optimal allocation of risk-bearing, Review of Economic Studies 31 (1964), 91-96.

[5] K. Arrow, Essays in the Theory of Risk-Bearing, North-Holland, 1971.

[6] O. E. Barndorff-Nielsen, J. Kent and M. Sorensen, Normal variance-mean mixtures and z distributions, Int. Statist. Reviews 50 (1982), 145-159.

[7] N. H. Bingham and R. Kiesel, Semi-parametric modelling in finance: Theoretical foundations, Quantitative Finance 1 (2001), 1-10.

[8] S. Borovka, F. J. Permana and H. V. D. Weide, A closed form approach to the valuation and hedging of basket and spread options, The Journal of Derivatives 14(4) (2007), 8-24.

[9] D. Brigo, F. Rapisarda and A. Sridi, The arbitrage-free multivariate mixture dynamics model: Consistent single-assets and index volatility smiles, arXiv:1302.7010v1 [q-fin.PR], (2013).

[10] R. Carmona and V. Durrleman, Generalizing the Black-Scholes formula to multivariate contingent claims, The Journal of Computational Finance 9(2) (2006), 627-685.

[11] P. Carr, H. Geman, D. B. Madan and M. Yor, The fine structure of asset returns: An empirical investigation, J. of Business 75(2) (2002), 305-332.

[12] R. Cont and P. Tankov, Financial Modelling with Jump Processes, CRC Financial Mathematics Series, Chapman and Hall, 2004.

[13] J. C. Cox, J. E. Ingersoll and S. A. Ross, A theory of the term structure of interest rates, Econometrica 53 (1985), 385-402.

[14] G. Debreu, Valuation equilibrium and Pareto optimum, Proceedings of the National Academy of Sciences 40 (1954), 588-592.

[15] J. Dhaene, A. Kukush and D. Linders, The multivariate Black & Scholes market: Conditions for completeness and no-arbitrage, Theory Probab. Math. Statist. 88 (2013), 1-14.

[16] E. Dimson and M. Mussavian, Three centuries of asset pricing, J. of Banking and Finance 23 (1999), 1745-1769.

[17] D. Duffie, Dynamic Asset Pricing Theory, Princeton University Press, New Jersey, 1992.

[18] E. Fama, Mandelbrot and the stable Paretian hypothesis, J. of Business 36(4) (1963), 420-429.

[19] S. L. Heston, A closed form solution for options with stochastic volatility with application to bond and currency options, Review of Financial Studies 6 (1993), 326-343.

[20] S. R. Hurst, E. Platen and S. T. Rachev, Option pricing for a log-stable asset price model, Mathematical and Computer Modelling 29 (1999), 105-119.

[21] W. Hürlimann, An extension of the Black-Scholes and Margrabe formulas to a multiple risk economy, Applied Mathematics 2(4) (2011a), 137-142.

[22] W. Hürlimann, Analytical pricing of an insurance embedded option: Alternative formulas and Gaussian approximation, J. of Informatics and Math. Sciences 3(2) (2011b), 87-105.

[23] W. Hürlimann, The algebra of option pricing: Theory and application, Int. J. of Algebra and Statistics 1(2) (2012), 68-88.

[24] W. Hürlimann, Margrabe formulas for a simple bivariate exponential variance-gamma price process (I): Theory, Int. J. Scientific Innovative Math. Research 1(1) (2013a), 1-16.

[25] W. Hürlimann, Margrabe formulas for a simple bivariate exponential variance-gamma price process (II): Statistical estimation and application, Int. J. Scientific Innovative Math. Research 1(1) (2013b), 33-44.

[26] W. Hürlimann, Normal variance-mean mixtures (I): An inequality between skewness and kurtosis, Advances in Inequalities and Applications (in press) 2014 (2013c).
URL:http://scik.org/index.php/aia/article/view/1171

[27] W. Hürlimann, Normal variance-mean mixtures (II): A multivariate moment method, J. of Mathematical and Computational Science (in press) (2013d).

[28] W. Hürlimann, Option pricing in the multivariate Black-Scholes market with Vasicek interest rates, Mathematical Finance Letters 2(1) (2013e), 1-18.

[29] W. Hürlimann, Portfolio ranking efficiency (I): Normal variance gamma returns, International J. of Math. Archive 4(5) (2013f), 192-218.

[30] W. Hürlimann, Probabilistic representation of a normal generalized inverse Gaussian integral: Application to option pricing, J. of Advances in Mathematics 4(1) (2013g), 268-277.

[31] M. Jeanblanc, M. Yor and M. Chesney, Mathematical Methods for Financial Markets, Springer Finance, Springer-Verlag London Limited, 2009.

[32] L. Korsholm, The semiparametric normal variance-mean mixture model, Scandinavian Journal of Statistics 27 (2000), 221-267.

[33] S. Kotz, T. J. Kozubowski and K. Podgorski, The Laplace Distribution and Generalizations: A Revisit with Applications, Birkhäuser, Boston, 2001.

[34] M. Krekel, J. de Kock, R. Korn and T.-K. Man, An analysis of pricing methods for basket options, Willmot Magazine (2004), 82-89.

[35] E. Luciano and W. Schoutens, A multivariate jump-driven financial asset model, Quantitative Finance 6(5) (2006), 385-402.

[36] D. Madan, Purely Discontinuous Asset Pricing Processes, In: E. Jouini, J. Cvitanic and M. Musiela (Eds.), Option Pricing, Interest Rates and Risk Management, 105-153, Cambridge University Press, Cambridge, 2001.

[37] D. Madan, P. Carr and E. Chang, The variance gamma process and option pricing, European Finance Review 2 (1998), 79-105.

[38] D. Madan and M. Yor, Representing the CGMY and Meixner Lévy processes as time changed Brownian motions, The Journal of Computational Finance 12(1) (2008), 27-47.

[39] B. Mandelbrot, The variation of certain speculative prices, J. of Business 36 (1963), 394-419.

[40] B. Mandelbrot, The variation of some other speculative prices, J. of Business 40 (1967), 393-413.

[41] M. A. Milevsky and S. E. Posner, A closed-form approximation for valuing basket options, The Journal of Derivatives 5(4) (1998), 54-61.

[42] K. R. Milterssen and S. A. Persson, Pricing rate of return guarantees in a Heath-Jarrow-Morton framework, Insurance: Mathematics and Economics 25(3) (1999), 307-325.

[43] C. Munk, Financial Asset Pricing Theory, Oxford University Press, Oxford, 2013.

[44] T. Negishi, Welfare economics and existence of an equilibrium for a competitive economy, Metroeconometrica 12 (1960), 92-97.

[45] J. Pitman and M. Yor, Infinitely divisible laws associated with hyperbolic functions, Canadian Journal of Mathematics 55(2) (2003), 292-330.

[46] S. T. Rachev, Y. S. Kim, M. L. Bianchi and F. J. Fabozzi, Financial Models with Lévy Processes and Volatility Clustering, J. Wiley & Sons, Inc., Hoboken, New Jersey, 2011.

[47] S. T. Rachev and S. Mittnik, Stable Paretian Models in Finance, J. Wiley & Sons, NY, 2000.

[48] S. A. Ross, A simple approach to the valuation of risky streams, J. of Business 51 (1978), 453-475.

[49] W. Schoutens and J. L. Teugels, Lévy processes, polynomials and martingales, Communications in Statistics-Stochastic Models 14 (1998), 335-349.

[50] A. Tjetjep and E. Seneta, Skewed normal variance-mean models for asset pricing and the method of moments, International Statistical Review 74(1) (2006), 109-126.

[51] S. M. Turnbull and L. M. Wakeman, A quick algorithm for pricing European average options, The Journal of Financial and Quantitative Analysis 26(3) (1991), 377-389.

[52] A. Venkatramanan and C. Alexander, Closed form approximations for spread options, Applied Mathematical Finance, iFirst (2011), 1-26.

[53] Y.-C. Wu, S.-L. Liao and S.-D. Shyu, Closed-form valuations of basket options using a multivariate normal inverse Gaussian model, Insurance: Math. Econom. 44(1) (2009), 95-102.

[54] M. V. Wüthrich, H. Bühlmann and H. Furrer, Market-Consistent Actuarial Valuation, EAA Lecture Notes, Vol. 1 (2nd Revised and Enlarged Edition), Springer-Verlag, 2010.

[55] M. V. Wüthrich and M. Merz, Financial Modeling, Actuarial Valuation and Solvency in Insurance, Springer Finance, 2013.