[1] T. Aubin, Problèmes isopérimétriques et espaces de
Sobolev, J. Differential Geom. 11(4) (1976), 573-598.
[2] T. Aubin, Equations différentielles non linéaires et
problème de Yamabe concernant la courbure scalaire, J. Math. Pure
Appl. 55 (1976), 269-296.
[3] T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer
Monogr. Math., Springer-Verlag, Berlin, 1998.
[4] T. Aubin and Y.Y Li, On the best Sobolev inequality, J. Math.
Pures Appl. 78 (1999), 353-387.
[5] D. Bakry, L’hypercontractivité et son utilisation en
théorie des semigroupes, Lectures on probability theory
(Saint-Flour, 1992), pp. 1-114, Lectures Notes in Mathematics, 1581,
Springer, Berlin, 1994.
[6] E. Barbosa and M. Montenegro, A note on extremal functions for
sharp Sobolev inequalities, Electronic Journal of Differential
Equations 87 (2007), 1-5.
[7] E. Barbosa and M. Montenegro, On the continuity of the second best
constant, C. R. Acad. Sci. Paris Ser. I 345 (2007), 579-582.
[8] E. Barbosa and M. Montenegro, Second Sobolev best constant:
continuity with respect to parameter, preprint.
[9] C. Brouttelande, On the second best constant in logarithmic
Sobolev inequalities on complete Riemannian manifolds, Bull. Sci.
Math. 127(4) (2003), 292-312.
[10] C. Brouttelande, The best constant problem for a family of
Gagliardo-Nirenberg inequalities on compact Riemannian manifold, Proc.
of the Edinburgh Math. Soc. (2) 46(1) (2003), 117-146.
[11] S. Collion, E. Hebey and M. Vaugon, Sharp Sobolev inequalities in
the presence of a twist, Trans. Amer. Math. Soc. 359 (2007),
2531-2537.
[12] Z. Djadli and O. Druet, Extremal functions for optimal Sobolev
inequalities on compact manifolds, Calc. Var. 12 (2001), 59-84.
[13] O. Druet, Generalized scalar curvature type equations on compact
Riemannian manifolds, Proc. Roy. Soc. Edinburgh 130A (2000),
767-788.
[14] O. Druet, Isoperimetric inequalities on compact manifolds,
Geometriae Dedicata 90 (2002), 217-236.
[15] O. Druet, Optimal Sobolev inequalities of arbitrary order on
compact Riemannian manifolds, J. Funct. Anal. 159 (1998), 217-242.
[16] O. Druet, Sharp local isoperimetric inequalities involving the
scalar curvature, Proc. A.M.S. 130 (2002), 2351-2361.
[17] O. Druet, The best constants problem in Sobolev inequalities,
Math. Ann. 314 (1999), 327-346.
[18] O. Druet and E. Hebey, The AB program in geometric analysis:
sharp Sobolev inequalities and related problems, Mem. Amer. Math. Soc.
160 (761) (2002).
[19] O. Druet, E. Hebey and M. Vaugon, Optimal Nash’s
inequalities on Riemannian manifolds: the influence of geometry,
Internat. Math. Re. Notices 14 (1999), 735-779.
[20] O. Druet, E. Hebey and M. Vaugon, Sharp Sobolev inequalities with
lower order remainder terms, Trans. Amer. M ath. Soc. 353 (2000),
269-289.
[21] S. Gallot, Inégalités isopérimetriques et analytiques
sur les variéties Riemanniennes, Société Mathématique de
France, Astérisque 163-164 (1988), 31-91.
[22] S. Gallot, Isoperimetric inequalities based on integral norms of
Ricci curvture, Société Mathematique de France, Astérisque
157-158 (1988), 191-216.
[23] E. Hebey, Courbure Scalaire et géometrie conforme, Journal of
Geometry and Physics 10 (1993), 345-380.
[24] E. Hebey, Fonctions extrémales pour une inégalité de
Sobolev optimale dans la classe conforme de la sphére, J. Math.
Pures Appl. 77 (1998), 721-733.
[25] E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and
inequalities, Courant Lect. Notes Math., Vol. 5, Courant Institute of
Mathematical Sciences, New York University, New York, 1999.
[26] E. Hebey, Sharp Sobolev inequalities for vector valued maps,
Math. Z. 253 (2006), 681-708.
[27] E. Hebey and M. Vaugon, From best constants to critical
functions, Math. Z. 237 (2001), 737-767.
[28] E. Hebey and M. Vaugon, Meilleures constantes dans le
théorème d’inclusion de Sobolev, Ann. Inst. H.
Poincaré. 13 (1996), 57-93.
[29] S. Ilias, Constantes explicites pour les inégalités de
Sobolev sur les variétés Riemanniennes compactes, Annales de
l’Institut Fourier 33 (1983), 151-165.
[30] Y. Y Li and T. Ricciardi, A sharp Sobolev inequality on
Riemannian manifolds, Commun. Pure Appl. Anal. 2(1) (2003), 1-31.
[31] R. Schoen, Conformal deformation of a riemannian metric to
constant scalar curvature, J. Differential Geom. 20 (1984),
479-495.
[32] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura
Appl. (iv) 110 (1976), 353-372.