References

ON THE CLASSICAL SHARP SOBOLEV INEQUALITY AND RELATED PROBLEMS


[1] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom. 11(4) (1976), 573-598.

[2] T. Aubin, Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pure Appl. 55 (1976), 269-296.

[3] T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Monogr. Math., Springer-Verlag, Berlin, 1998.

[4] T. Aubin and Y.Y Li, On the best Sobolev inequality, J. Math. Pures Appl. 78 (1999), 353-387.

[5] D. Bakry, L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory (Saint-Flour, 1992), pp. 1-114, Lectures Notes in Mathematics, 1581, Springer, Berlin, 1994.

[6] E. Barbosa and M. Montenegro, A note on extremal functions for sharp Sobolev inequalities, Electronic Journal of Differential Equations 87 (2007), 1-5.

[7] E. Barbosa and M. Montenegro, On the continuity of the second best constant, C. R. Acad. Sci. Paris Ser. I 345 (2007), 579-582.

[8] E. Barbosa and M. Montenegro, Second Sobolev best constant: continuity with respect to parameter, preprint.

[9] C. Brouttelande, On the second best constant in logarithmic Sobolev inequalities on complete Riemannian manifolds, Bull. Sci. Math. 127(4) (2003), 292-312.

[10] C. Brouttelande, The best constant problem for a family of Gagliardo-Nirenberg inequalities on compact Riemannian manifold, Proc. of the Edinburgh Math. Soc. (2) 46(1) (2003), 117-146.

[11] S. Collion, E. Hebey and M. Vaugon, Sharp Sobolev inequalities in the presence of a twist, Trans. Amer. Math. Soc. 359 (2007), 2531-2537.

[12] Z. Djadli and O. Druet, Extremal functions for optimal Sobolev inequalities on compact manifolds, Calc. Var. 12 (2001), 59-84.

[13] O. Druet, Generalized scalar curvature type equations on compact Riemannian manifolds, Proc. Roy. Soc. Edinburgh 130A (2000), 767-788.

[14] O. Druet, Isoperimetric inequalities on compact manifolds, Geometriae Dedicata 90 (2002), 217-236.

[15] O. Druet, Optimal Sobolev inequalities of arbitrary order on compact Riemannian manifolds, J. Funct. Anal. 159 (1998), 217-242.

[16] O. Druet, Sharp local isoperimetric inequalities involving the scalar curvature, Proc. A.M.S. 130 (2002), 2351-2361.

[17] O. Druet, The best constants problem in Sobolev inequalities, Math. Ann. 314 (1999), 327-346.

[18] O. Druet and E. Hebey, The AB program in geometric analysis: sharp Sobolev inequalities and related problems, Mem. Amer. Math. Soc. 160 (761) (2002).

[19] O. Druet, E. Hebey and M. Vaugon, Optimal Nash’s inequalities on Riemannian manifolds: the influence of geometry, Internat. Math. Re. Notices 14 (1999), 735-779.

[20] O. Druet, E. Hebey and M. Vaugon, Sharp Sobolev inequalities with lower order remainder terms, Trans. Amer. M ath. Soc. 353 (2000), 269-289.

[21] S. Gallot, Inégalités isopérimetriques et analytiques sur les variéties Riemanniennes, Société Mathématique de France, Astérisque 163-164 (1988), 31-91.

[22] S. Gallot, Isoperimetric inequalities based on integral norms of Ricci curvture, Société Mathematique de France, Astérisque 157-158 (1988), 191-216.

[23] E. Hebey, Courbure Scalaire et géometrie conforme, Journal of Geometry and Physics 10 (1993), 345-380.

[24] E. Hebey, Fonctions extrémales pour une inégalité de Sobolev optimale dans la classe conforme de la sphére, J. Math. Pures Appl. 77 (1998), 721-733.

[25] E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lect. Notes Math., Vol. 5, Courant Institute of Mathematical Sciences, New York University, New York, 1999.

[26] E. Hebey, Sharp Sobolev inequalities for vector valued maps, Math. Z. 253 (2006), 681-708.

[27] E. Hebey and M. Vaugon, From best constants to critical functions, Math. Z. 237 (2001), 737-767.

[28] E. Hebey and M. Vaugon, Meilleures constantes dans le théorème d’inclusion de Sobolev, Ann. Inst. H. Poincaré. 13 (1996), 57-93.

[29] S. Ilias, Constantes explicites pour les inégalités de Sobolev sur les variétés Riemanniennes compactes, Annales de l’Institut Fourier 33 (1983), 151-165.

[30] Y. Y Li and T. Ricciardi, A sharp Sobolev inequality on Riemannian manifolds, Commun. Pure Appl. Anal. 2(1) (2003), 1-31.

[31] R. Schoen, Conformal deformation of a riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), 479-495.

[32] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (iv) 110 (1976), 353-372.