[1] R. Agarwal, M. Bohner, A. Domoshnitsky and Y. Goltser, Floquet
theory and stability of nonlinear integro-differential equation, Acta
Math. Hungar. 109 (2005), 305-330.
[2] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An
Introduction with Applcations, Birkhäuser, Boston, 2001.
[3] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time
Scales, Birkhäuser Boston, 2003.
[4] Yuqing Chen, Juan J. Nieto and Donal O’Regan, Anti-periodic
solutions for fully nonlinear first-order differential equations,
Mathematical and Computer Modelling 46(9-10) (2007), 1183-1190.
[5] C. Corduneanu, Integral Equations and Applications, Cambridge
University Press, 1991.
[6] W. Ding, Y. Xing and M. Han, Anti-periodic boundary value problems
for first order impulsive functional differential equations, Appl.
Math. Comput. 186 (2007), 45-53.
[7] D. Franco, Green’s functions and comparison results for
impulsive integro-differential equations, Nonlinear Analysis 47
(2001), 5723-5728.
[8] D. Franco, J.J. Nieto and D. O’Regan, Anti-periodic
boundary value problem for nonlinear first order ordinary differential
equations, Math. Inequal. Appl. 6 (2003), 477-485.
[9] D. Guo, Initial value problems for integro-differential equations
of Volterra type in Banach spaces, J. Appl. Math. Stochastic Anal. 7
(1994), 13-23.
[10] D. Guo, V. Lakshmikantham and X. Liu, Nonlinear Integral
Equations in Abstract Spaces, Kluwer Academic, Dordrecht, 1996.
[11] Z. He and X. He, Monotone iterative technique for impulsive
integro-differential equations with periodic boundary conditions,
Comput. Math. Appl. 48 (2004) 73-84.
[12] Z. He and X. He, Periodic boundary value problems for first order
impulsive integrodifferential equations of mixed type, J. Math. Anal.
Appl. 296 (2004), 8-20.
[13] S. Hilger, Analysis on measure chain, a unified approach to
continuous and discrete calculus, Results Math. 18 (1990), 18-56.
[14] T. Jankowski and R. Jankowski, On integro-differential equations
with delayed arguments, Dyn. Contin. Discrete Impuls. Syst. Ser. A
Math. Anal. 13 (2006), 101-115.
[15] G. S. Ladde and S. Sathanantham, Periodic boundary value problem
for impulsive integro-differential equations of Volterra type, J.
Math. Phys. Sci. 25 (1991), 119-129.
[16] V. Lakshmikantham, S. Sivasundaram and B. Kaymakcalan, Dynamic
Systems on Measure Chains, Kluwer academic Publishers, 1996.
[17] J. Li and J. Shen, Periodic boundary value problems for impulsive
integro-differential equations of mixed type, Appl. Math. Comput. 183
(2006), 890-902.
[18] Y. Li and H. Zhang, Extremal Solutions of Periodic Boundary Value
Problems for First-Order Impulsive Integro differential Equations of
Mixed-Type on Time Scales, Boundary Value Problems, Volume 2007
(2007), Article ID 73176.
[19] N. G. Lloyd, Degree Theory, Cambridge University Press,
Cambridge-New York-Melbourne, 1978.
[20] Z. G. Luo, J. H. Shen and J. J. Nieto, Antiperiodic boundary
value problem for firstorder impulsive ordinary differential
equations, Comput. Math. Appl. 49 (2005), 253-261.
[21] J. J. Nieto and R. Rodriguez Lopez, Periodic boundary value
problems for non-Lipschitzian impulsive functional differential
equations, J. Math. Anal. Appl. 318 (2006), 593-610.
[22] L. Skóra, Monotone iterative method for differential systems
with impulses and antiperiodic boundary condition, Comment. Math.
Prace Mat. 42(2) (2002), 237-249.
[23] G. Song, Initial Value Problems for Systems of
Integro-differential Equations in Banach Spaces, J. Math. Anal. Appl.
264 (2001), 68-75.
[24] G. Song and X. Zhu, Extremal solutions of periodic boundary value
problems for first order integro-differential equations of mixed type,
J. Math. Anal. Appl. 300 (2004), 1-11.
[25] C. C. Tisdell, Existence of solutions to first-order periodic
boundary value problems, J. Math. Anal. Appl. 323(2) (2006),
1325-1332.
[26] C. C. Tisdell, On first-order discrete boundary value problems,
J. Difference Equ. Appl. 12 (2006), 1213-1223.
[27] Y. Xing, M. Han and G. Zheng, Initial value problem for first
order integro-differential equation of Volterra type on time scales,
Nonlinear Analysis 60 (2005), 429-442.
[28] Y. Xing, W. Ding and M. Han, Periodic boundary value problems of
integro-differential equations of Volterra type on time scales,
Nonlinear Analysis 68 (2008), 127-138.
[29] H. Xu and J. J. Nieto, Extremal solutions of a class of nonlinear
integro-differential equations in Banach spaces, Proc. Amer. Math.
Soc. 125 (1997), 2605-2614.