References

NUMERICAL AND ANALYTICAL TREATMENT FOR THE EFFECTIVENESS OF OPERATOR METHOD FOR A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS


[1] R. L. Bagley and P. J. Torvik, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech. 51 (1984), 294-298.

[2] L. Bikulciene, R. Marcinkevicius and Z. Navickas, Computer realization of the operator method for solving differential equations, Lecture Notes in Computer Science 3401 (2005), 179-186.

[3] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, Second Edition, John Wiley & Sons, New York, 2008.

[4] F. S. Feber, New exact solutions of differential equations derived by fractional calculus, Appl. Math. Comput. 170 (2005), 1261-1270.

[5] I. Hashim, O. Abdulaziz and S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 674-684.
[6] J. H. He and X. H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons, and Fractals 30 (2006), 700-708.

[7] X. Hua, The exponential function rational expansion method and exact solutions to non-linear lattice equations system, Appl. Math. Comput. 217 (2010), 1561-1565.

[8] M. Inc, The approximate and exact solutions of the space-and time-fractional Burger’s equations with initial conditions by variational iteration method, Appl. Math. Comput. 345 (2008), 476-484.

[9] H. Jafari and V. Daftardar-Gejji, Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition, Appl. Math. Comput. 180 (2006), 488-497.

[10] M. M. Khader, On the numerical solutions for the fractional diffusion equation, Communications in Nonlinear Science and Numerical Simulation 16 (2011), 2535-2542.

[11] M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math. 172(1) (2004), 65-77.

[12] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, Inc., New York, 1993.

[13] S. Momani and Z. Odibat, Numerical approach to differential equations of fractional order, J. Comput. Appl. Math. 207 (2007), 96-110.

[14] S. Momani and Z. Odibat, Numerical comparison of methods for solving linear differential equations of fractional order, J. Comput. Appl. Math. 31 (2007), 1248-1255.

[15] Z. Navickas and L. Bikulciene, Expressions of solutions of ordinary differential equations by standard functions, Mathematical Modeling and Analysis 11 (2006), 399-412.

[16] Z. Navickas, The operator method for solving nonlinear differential equations, Lietuvos Matematikos Rinkinys 42 (2002), 486-493.

[17] Z. Navickas and M. Ragulskis, How far one can go with the exp-function method?, Appl. Math. Comput. 211 (2009), 522-530.

[18] Z. Navickas, L. Bikulciene and M. Ragulskis, Generalization of exp-function and other standard function methods, Appl. Math. Comput. 216 (2010), 2380-2393.

[19] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

[20] S. Saha and R. K. Bera, An approximate solution of a nonlinear fractional differential equations by Adomian decomposition method, Journal of Applied Mathematics and Computation 167 (2005), 561-571.

[21] N. H. Sweilam, M. M. Khader and A. M. Nagy, Numerical solution of two-sided space fractional wave equation using finite difference method, Computation and Applied Mathematics 235 (2011), 2832-2841.

[22] N. H. Sweilam and M. M. Khader, A Chebyshev pseudo-spectral method for solving fractional order integro-differential equations, ANZIAM 51 (2010), 464-475.

[23] N. H. Sweilam, M. M. Khader and R. F. Al-Bar, Numerical studies for a multi-order fractional differential equation, Physics Letter A 371 (2007), 26-33.

[24] X. H. Wu and J. H. He, Solitary solutions, periodic solutions and compacton-like solutions using the exp-function method, Computers and Mathematics with Applications 54 (2007), 966-986.

[25] X. H. Wu and J. H. He, Exp-function method and its applications to nonlinear equations, Chaos, Solitons, and Fractals 38 (2008), 903-910.