[1] R. L. Bagley and P. J. Torvik, On the appearance of the fractional
derivative in the behavior of real materials, J. Appl. Mech. 51
(1984), 294-298.
[2] L. Bikulciene, R. Marcinkevicius and Z. Navickas, Computer
realization of the operator method for solving differential equations,
Lecture Notes in Computer Science 3401 (2005), 179-186.
[3] J. C. Butcher, Numerical Methods for Ordinary Differential
Equations, Second Edition, John Wiley & Sons, New York, 2008.
[4] F. S. Feber, New exact solutions of differential equations derived
by fractional calculus, Appl. Math. Comput. 170 (2005), 1261-1270.
[5] I. Hashim, O. Abdulaziz and S. Momani, Homotopy analysis method
for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul. 14 (2009),
674-684.
[6] J. H. He and X. H. Wu, Exp-function method for nonlinear wave
equations, Chaos, Solitons, and Fractals 30 (2006), 700-708.
[7] X. Hua, The exponential function rational expansion method and
exact solutions to non-linear lattice equations system, Appl. Math.
Comput. 217 (2010), 1561-1565.
[8] M. Inc, The approximate and exact solutions of the space-and
time-fractional Burger’s equations with initial conditions by
variational iteration method, Appl. Math. Comput. 345 (2008),
476-484.
[9] H. Jafari and V. Daftardar-Gejji, Solving linear and nonlinear
fractional diffusion and wave equations by Adomian decomposition,
Appl. Math. Comput. 180 (2006), 488-497.
[10] M. M. Khader, On the numerical solutions for the fractional
diffusion equation, Communications in Nonlinear Science and Numerical
Simulation 16 (2011), 2535-2542.
[11] M. M. Meerschaert and C. Tadjeran, Finite difference
approximations for fractional advection-dispersion flow equations, J.
Comput. Appl. Math. 172(1) (2004), 65-77.
[12] K. S. Miller and B. Ross, An Introduction to the Fractional
Calculus and Fractional Differential Equations, John Wiley & Sons,
Inc., New York, 1993.
[13] S. Momani and Z. Odibat, Numerical approach to differential
equations of fractional order, J. Comput. Appl. Math. 207 (2007),
96-110.
[14] S. Momani and Z. Odibat, Numerical comparison of methods for
solving linear differential equations of fractional order, J. Comput.
Appl. Math. 31 (2007), 1248-1255.
[15] Z. Navickas and L. Bikulciene, Expressions of solutions of
ordinary differential equations by standard functions, Mathematical
Modeling and Analysis 11 (2006), 399-412.
[16] Z. Navickas, The operator method for solving nonlinear
differential equations, Lietuvos Matematikos Rinkinys 42 (2002),
486-493.
[17] Z. Navickas and M. Ragulskis, How far one can go with the
exp-function method?, Appl. Math. Comput. 211 (2009), 522-530.
[18] Z. Navickas, L. Bikulciene and M. Ragulskis, Generalization of
exp-function and other standard function methods, Appl. Math. Comput.
216 (2010), 2380-2393.
[19] I. Podlubny, Fractional Differential Equations, Academic Press,
New York, 1999.
[20] S. Saha and R. K. Bera, An approximate solution of a nonlinear
fractional differential equations by Adomian decomposition method,
Journal of Applied Mathematics and Computation 167 (2005), 561-571.
[21] N. H. Sweilam, M. M. Khader and A. M. Nagy, Numerical solution of
two-sided space fractional wave equation using finite difference
method, Computation and Applied Mathematics 235 (2011), 2832-2841.
[22] N. H. Sweilam and M. M. Khader, A Chebyshev pseudo-spectral
method for solving fractional order integro-differential equations,
ANZIAM 51 (2010), 464-475.
[23] N. H. Sweilam, M. M. Khader and R. F. Al-Bar, Numerical studies
for a multi-order fractional differential equation, Physics Letter A
371 (2007), 26-33.
[24] X. H. Wu and J. H. He, Solitary solutions, periodic solutions and
compacton-like solutions using the exp-function method, Computers and
Mathematics with Applications 54 (2007), 966-986.
[25] X. H. Wu and J. H. He, Exp-function method and its applications
to nonlinear equations, Chaos, Solitons, and Fractals 38 (2008),
903-910.