References

A PROOF FOR GOLDBACH'S CONJECTURE


[1] M. EI Bachraoui, Prime in the interval [2n, 3n], International Journal of Contemporary Mathematical Sciences 1(3) (2006), 617-621.

[2] P. Erdos, Beweis eines satzes von tschebyschef, Acta Litt. Univ. Sci., Szeged, Sect. Math. 5 (1932), 194-198.

[3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford, 1964.

[4] Unsolved Problem in Number Theory, Richard K. Guy, Amazon.com.

[5] P. Erdos and J. Suranyi, Topics in the Theory of Numbers, Undergraduate Texts in Mathematics, Springer Verlag, 2003.

[6] S. Ramanujan, A proof of Bertrand’s postulate, Journal of the Indian Mathematical Society 11 (1919), 181-182.

[7] Shiva Kintali, A Generalization of Erdos’s Proof of Bertrand-Chebyshev Theorem. http://www.cs.princeton.edu/ kintali, 2008.

[8] H. Sazegar, A method for solving Legendre’s conjecture, Journal of Mathematics Research, (2012).

[9] Sinisalo and K. Matti, Checking the Goldbach conjecture up to 4 1011, Mathematics of Computation 61(204) (1993), 931-934. doi:10.2307/2153264.

[10] J. R. Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157-176.

[11] D. R. Heath-Brown and J. C. Puchta, Integers represented as a sum of primes and powers of two, Asian Journal of Mathematics 6(3) (2002), 535-565. arXiv:math.NT/0201299.

[12] J. Pintz and I. Z. Ruzsa, On Linnik’s approximation to Goldbach’s problem, I, Acta Arithmetica 109(2) (2003), 169-194. doi:10.4064/aa109-2-6.