[1] M. EI Bachraoui, Prime in the interval [2n, 3n],
International Journal of Contemporary Mathematical Sciences 1(3)
(2006), 617-621.
[2] P. Erdos, Beweis eines satzes von tschebyschef, Acta Litt. Univ.
Sci., Szeged, Sect. Math. 5 (1932), 194-198.
[3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of
Numbers, Oxford, 1964.
[4] Unsolved Problem in Number Theory, Richard K. Guy, Amazon.com.
[5] P. Erdos and J. Suranyi, Topics in the Theory of Numbers,
Undergraduate Texts in Mathematics, Springer Verlag, 2003.
[6] S. Ramanujan, A proof of Bertrand’s postulate, Journal of
the Indian Mathematical Society 11 (1919), 181-182.
[7] Shiva Kintali, A Generalization of Erdos’s Proof of
Bertrand-Chebyshev Theorem. http://www.cs.princeton.edu/
kintali, 2008.
[8] H. Sazegar, A method for solving Legendre’s conjecture,
Journal of Mathematics Research, (2012).
[9] Sinisalo and K. Matti, Checking the Goldbach conjecture up to 4
1011, Mathematics of Computation 61(204) (1993), 931-934.
doi:10.2307/2153264.
[10] J. R. Chen, On the representation of a larger even integer as the
sum of a prime and the product of at most two primes, Sci. Sinica 16
(1973), 157-176.
[11] D. R. Heath-Brown and J. C. Puchta, Integers represented as a sum
of primes and powers of two, Asian Journal of Mathematics 6(3) (2002),
535-565. arXiv:math.NT/0201299.
[12] J. Pintz and I. Z. Ruzsa, On Linnik’s approximation to
Goldbach’s problem, I, Acta Arithmetica 109(2) (2003), 169-194.
doi:10.4064/aa109-2-6.