References

SOLUTIONS OF FRACTIONAL HEAT-AND WAVE-LIKE EQUATIONS VIA FRACTIONAL VARIATIONAL ITERATION METHOD


[1] J. H. He, Variational iteration method-a kind of non-linear analytical technique: Some examples, Int. J. Non-Linear Mech. 34 (1999), 699-708.

[2] J. H. He, Approximate analytical solution for seepage flow with fractional derivative in porous media, Comput. Methods Appl. Mech. Eng. 167 (1998), 57-68.

[3] J. H. He, G. C. Wu and F. Austin, The variational iteration method which should be followed, Nonlin. Sci. Lett. A 1 (2010), 1-30.

[4] N. Faraz, Y. Khan and F. Austin, An alternative approach to differential-difference equations using the variational iteration method, Z. Naturforschung. 65a (2010), 1055-1059.

[5] S. Nadeem, T. Hayat, Noreen Sher Akbar and M. Y. Malik, On the influence of heat transfer in peristalsis with variable viscosity, International Journal of Heat and Mass Transfer 52 (2009), 4722-4730.

[6] S. Das, Analytical solution of a fractional diffusion equation by variational iteration method, Comput. Math. Appl. 57 (2009), 483-487.

[7] S. Momani and Z. Odibat, Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl. 58 (2009), 2199-2208.

[8] S. Momani and Z. Odibat, Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Phys. Lett. A 355 (2006), 271-279.

[9] S. Momani and Z. Odibat, Numerical comparison of the methods for solving linear differential equations of fractional order, Chaos Solitons Fractals 31 (2007), 1248-1255.

[10] N. Faraz, Y. Khan and A. Yildirim, Analytical approach to two-dimensional viscous flow with a shrinking sheet via variational iteration algorithm-II, J. King. Saud. Uni. Sci. 23 (2011), 77-81.

[11] M. Inc, The approximate and exact solutions of the space and time-fractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl. 345 (2008), 476-484.

[12] M. Inokuti, H. Sekine and T. Mura, General use of the Lagrange multiplier in nonlinear mathematical physics, in: S. Nemat-Nasser (Ed.), Variational Methods in the Mechanics of Solids, Pergamon Press, New York, (1978), 156-162.

[13] G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions, Appl. Math. Lett. 22 (2009), 378-385.

[14] I. Podlubry, Fractional Differential Equations, Academic Press, California, San Diego, 1999.

[15] K. Diet Helm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248.

[16] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Willey and Sons, Inc., New York, 2003.

[17] G. Jumarie, New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations, Math. Comput. Model. 44 (2006), 231-254.

[18] G. Jumarie, Laplace’s transformed of fractional order via the Mittage-Leffler function and modified Riemann-Liouville derivative, Appl. Math. Lett. 22 (2009), 1659-1664.

[19] G. C. Wu and J. H. He, Fractional calculus of variations in fractal space-time, Nonlinear Sci. Lett. A 1(3) (2010), 281-287.

[20] G. C. Wu and E. W. M. Lee, Fractional variational iteration method and its application, Phys. Lett. A 374 (2010), 2506-2509.

[21] S. Momani, Analytic approximate solution for fractional heat-like and wave-like equations with variables coefficients using the decomposition method, Appl. Math. Comput. 165 (2005), 459-472.

[22] D. H. Shou and J. H. He, Beyond Adomian’s methods: The variational iteration method for solving heat-like and wave-like equations with variables coefficients, Phys. Lett. A 73(1) (2007), 1-5.

[23] H. Jafari and V. Daftardar-Gejii, Solving linear and non-linear fractional diffusion and wave equations by Adomian-decomposition, Appl. Math. Comput. 180 (2006), 488-497.

[24] M. A. Noor and S. T. Mohyud-Din, Variational iteration method for solving higher-order nonlinear boundary value problems using He’s polynomials, International Journal of Nonlinear Sciences and Numerical Simulation 9(2) (2008), 141-157.

[25] S. T. Mohyud-Din, A. Yildirim and M. Usman, Homotopy analysis method for fractional partial differential equations, International Journal of Physical Sciences 6(1) (2011), 136-145.