References

GENERAL NONCONVEX WIENER-HOPF EQUATIONS AND GENERAL NONCONVEX VARIATIONAL INEQUALITIES


[1] E. Al-Shemas and S. Billups, An iterative method for generalized set-valued nonlinear mixed quasi-variational inequalities, J. Comp. Appl. Math. 170 (2004), 423-432.

[2] E. Al-Shemas, Wiener-Hopf equations technique for multivalued general variational inequalities, J. Adv. Math. Stud. 2(2) (2009), 01-08.

[3] E. Al-Shemas, Projection iterative methods for multivalued general variational inequalities, Appl. Math. & Inform. Sci. 3(2) (2009), 177-184.

[4] M. Bounkhel, L. Tadj and A. Hamdi, Iterative schemes to solve nonconvex variational problems, J. Inequal. Pure Appl. Math. 4 (2003), 1-14.

[5] F. H. Clarke, R. J. Stern and P. R. Wolenski, Proximal smoothness and the lower property, J. Convex Anal. 2(1/2) (1995), 117-144.

[6] F. H. Clarke, Y. S. Ledyaev and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, Berlin, 1998.

[7] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, SIAM, Philadelphia, 2000.

[8] J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-512.

[9] A. Moudafi, An algorithmic approach to prox-regular variational inequalities, Appl. Math. Comput. 155(3) (2004), 845-852.

[10] M. Aslam Noor, Iterative schemes for nonconvex variational inequalities, J. Optim. Theory Appl. 121 (2004), 385-395.

[11] M. Aslam Noor, Strongly nonlinear nonconvex variational inequalities, J. Adv. Math. Stud. 4(1) (2011), 77-84.

[12] M. Aslam Noor, Nonconvex Wiener-Hopf equations and variational inequalities, to appear.

[13] L. P. Pang, J. Shen and H. S. Song, A modified predictor-corrector algorithm for solving nonconvex generalized variational inequalities, Computers Math. Appl. 54 (2007), 319-325.

[14] R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc. 352 (2000), 5231-5249.

[15] S. Shi, Equivalence of variational inequalities with Wiener-Hopf equations, Proc. Amer. Math. Soc. 111 (1991), 439-446.

[16] G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci., Paris, 258 (1964), 4413-4416.