[1] K. E. Atkinson, An Introduction to Numerical Analysis, 2nd
Edition, John Wiley & Sons, New York, 1989.
[2] J. P. Berrut and L. N. Trefthen, Barycentric Lagrange
interpolation, SIAM Rev. 46(3) (2004), 501-517.
[3] R. L. Burden and J. D. Faires, Numerical Analysis, 7th Edition,
Brooks and Cole, Pacific Grove, CA, 2001.
[4] S. C. Chapra and R. P. Canale, Numerical Methods for Engineers,
3rd Edition, McGraw-Hill, New York, 1998.
[5] S. D. Conte and Carl de boor, Elementary Numerical Analysis, 3rd
Edition, McGraw-Hill, New York, 1980.
[6] M. Dvornikov, Formulae for numerical differentiation, JCAAM 5
(2007), 77-88. e-printarxiv:math.NA/0306092
[7] B. Fornberg, Calculation of weights in finite difference formulas,
SIAM Rev. 40(3) (1998), 685-691.
[8] N. J. Higham, The numerical stability of barycentric Lagrange
interpolation, IMAJNA 24 (2004), 547-556.
[9] F. B. Hildebrand, Introduction to Numerical Analysis, 2nd Edition,
McGraw-Hill, New York, 1974.
[10] I. R. Khan and R. Ohba, Closed-form expressions for the finite
difference approximations of first and higher derivatives based on
Taylor series, J. Comput. Appl. Math. 107 (1999), 179-193.
[11] I. R. Khan and R. Ohba, New finite difference formulas for
numerical differentiation, J. Comput. Appl. Math. 126 (2001),
269-276.
[12] I. R. Khan, R. Ohba and N. Hozumi, Mathematical proof of closed
form expressions for finite difference approximations based on Taylor
series, J. Comput. Appl. Math. 150 (2003), 303-309.
[13] I. R. Khan and R. Ohba, Taylor series based finite difference
approximations of higher degree derivatives, J. Comput. Appl. Math.
154 (2003), 115-124.
[14] J. Li, General explicit difference formulas for numerical
differentiation, J. Comput. Appl. Math. 183 (2005), 29-52.