References

FORMULAE FOR FINITE DIFFERENCE APPROXIMATIONS, QUADRATURE AND LINEAR MULTISTEP METHODS


[1] K. E. Atkinson, An Introduction to Numerical Analysis, 2nd Edition, John Wiley & Sons, New York, 1989.

[2] J. P. Berrut and L. N. Trefthen, Barycentric Lagrange interpolation, SIAM Rev. 46(3) (2004), 501-517.

[3] R. L. Burden and J. D. Faires, Numerical Analysis, 7th Edition, Brooks and Cole, Pacific Grove, CA, 2001.

[4] S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, 3rd Edition, McGraw-Hill, New York, 1998.

[5] S. D. Conte and Carl de boor, Elementary Numerical Analysis, 3rd Edition, McGraw-Hill, New York, 1980.

[6] M. Dvornikov, Formulae for numerical differentiation, JCAAM 5 (2007), 77-88. e-printarxiv:math.NA/0306092

[7] B. Fornberg, Calculation of weights in finite difference formulas, SIAM Rev. 40(3) (1998), 685-691.

[8] N. J. Higham, The numerical stability of barycentric Lagrange interpolation, IMAJNA 24 (2004), 547-556.

[9] F. B. Hildebrand, Introduction to Numerical Analysis, 2nd Edition, McGraw-Hill, New York, 1974.

[10] I. R. Khan and R. Ohba, Closed-form expressions for the finite difference approximations of first and higher derivatives based on Taylor series, J. Comput. Appl. Math. 107 (1999), 179-193.

[11] I. R. Khan and R. Ohba, New finite difference formulas for numerical differentiation, J. Comput. Appl. Math. 126 (2001), 269-276.

[12] I. R. Khan, R. Ohba and N. Hozumi, Mathematical proof of closed form expressions for finite difference approximations based on Taylor series, J. Comput. Appl. Math. 150 (2003), 303-309.

[13] I. R. Khan and R. Ohba, Taylor series based finite difference approximations of higher degree derivatives, J. Comput. Appl. Math. 154 (2003), 115-124.

[14] J. Li, General explicit difference formulas for numerical differentiation, J. Comput. Appl. Math. 183 (2005), 29-52.