References

ON EXISTENCE AND UNIQUENESS OF GENERATORS OF SHY SETS IN POLISH GROUPS


[1] C. Carathéodory, Vorlesungen Iuber Reellen Funktionen, Leipzig and Berlin, 1918.

[2] J. R. Christensen, Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, Actes du Deuxieme Colloque d’Analyse Fonctionnelle de Bordeaux (Univ. Bordeaux, 1973), I, pp. 29-39, Publ. Dep. Math. (Lyon) 10(2) (1973), 29-39.

[3] M. Csörnyei, Aronszajn null and Gaussian null sets coincide, Israel J. Math. 111 (1999), 191-201.

[4] R. Dougherty, Examples of non-shy sets, Fund. Math. 144 (1994), 73-88.

[5] F. Hausdorff, Mengenlehre, 3rd Edition, Berlin, 1935.

[6] B. R. Hunt, T. Sauer and J. A. Yorke, Prevalence: A Translation-Invariant on Infinite-Dimensional Spaces, Bulletin (New Series) of the American Mathematical Society 27(2) (1992), 217-238.

[7] S. Kakutani, Ober die metrisation der topologischen gruppen, Proc. Imp. Acad. Tokyo 12 (1936), 82-84.

[8] P. Mankiewicz, On the differentiability of Lipschitz mappings in Fréchet spaces, Studia Math. 45 (1973), 15-29.

[9] J. Mycielski, Some unsolved problems on the prevalence of ergodicity, instability, and algebraic independence, Ulam Quart. 1(3) (1992), 30 ff, approx. 8 pp.

[10] J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. 40(2) (1939), 560-566.

[11] J. C. Oxtoby, Invariant measures in groups which are not locally compact, Trans. Amer. Math. Soc. 60 (1946), 215-237.

[12] G. R. Pantsulaia, Invariant and Quasi-Invariant Measures in Infinite-Dimensional Topological Vector Spaces, Nova Science Publishers, Inc., New York, 2007.

[13] G. R. Pantsulaia and G. P. Giorgadze, On analogy of Liouville theorem in infinite-dimensional separable Hilbert space, Georgian Int. J. Sci. Technol. 1(2) (2008), 167-180.

[14] G. R. Pantsulaia, On a generalized Fourier in some infinite-dimensional Polish topological vector spaces, Georgian Int. J. Sci. Technol. 1(4) (2008), 313-326.

[15] G. R. Pantsulaia, On generators of shy sets on Polish topological vector spaces, New York J. Math. 14 (2008), 235-261.

[16] G. R. Pantsulaia and G. P. Giorgadze, On Liouville type theorems for Mankiewicz and Preiss-Tišer generators in Georgian Int. J. Sci. Technol. 1(2) (2009).

[17] G. R. Pantsulaia, On a certain criterion of shyness in the product of unimodular Polish groups that are not compact, J. Math. Sci. Adv. Appl. 3(2) (2009), 287-302.

[18] G. R. Pantsulaia, On T-shy sets in Radon metric groups, J. Math. Sci. Adv. Appl. 5(1) (2010), 149-186.

[19] G. R. Pantsulaia and G. P. Giorgadze, Lebesgue -null sets in are not preserved under Lipschitz isomorphisms, Georg. Inter. J. Sci. Technol. 3(1) (2011), 39-49.

[20] R. R. Phelps, Gaussian null sets and differentiability of Lipschitz maps on Banach spaces, Pac. J. Math. 77 (1978), 523-531.

[21] L. Pontrjagin, Topological Groups, Princeton, 1939.

[22] D. Preiss and J. Tišer, Two unexpected examples concerning differentiability of Lipschitz functions on Banach spaces, Geometric aspects of functional analysis, (Israel, 1992-1994), 219-238, Oper. Theory Adv. Appl., Birkhäuser, Basel, 77 (1995).

[23] H. Shi, Measure-Theoretic Notions of Prevalence, Ph.D. Dissertation (under Brian S. Thomson), Simon Fraser University, 1997.

[24] N. N. Vakhanya, V. I. Tarieladze and S. A. Chobanyan, Probability Distributions in Banach Spaces, Nauka, Moscow, 1985 (in Russian).