References

THE AREA INTEGRAL ASSOCIATED TO SELF-ADJOINT OPERATORS ON WEIGHTED MORREY SPACES


[1] P. Auscher and E. Russ, Hardy spaces and divergence operators on strongly Lipschitz domain of J. Funct. Anal. 201 (2003), 148-184.

[2] P. Auscher, X. T. Duong and A. McIntosh, Boundedness of Banach space valued singular integral operators and Hardy spaces, (2005), (unpublished preprint).

[3] P. Auscher, On necessary and sufficient conditions for of Riesz transforms associated to elliptic operators on and related estimates, Memoirs of the Amer. Math. Soc. 186(871) (2007).

[4] P. Auscher, A. McIntosh and E. Russ, Hardy spaces of differential forms on Riemannian manifolds, J. Geom. Anal. 18 (2008), 192-248.

[5] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. 7 (1987), 273-279.

[6] T. Coulhon, X. T. Duong and X. D. Li, Littlewood-Paley-Stein functions on complete Riemannian manifolds for Studia Math. 154 (2003), 37-57.

[7] J. Duoandikoetxea, Fourier Analysis, Translated and revised from the 1995 Spanish original by David Cruz-Uribe, Graduate Studies in Mathematics, 29, American Mathematical Society, Providence, RI, 2001.

[8] X. T. Duong and L. X. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), 943-973.

[9] X. T. Duong, S. Hofmann, D. Mitrea, M. Mitrea and L. X. Yan, Hardy spaces and regularity for the inhomogeneous Dirichlet and Neumann problems, Rev. Mat. Iberoamericana (2010) (to appear).

[10] J. Dziubański and J. Zienkiewicz, Hardy space to Schrödinger operators with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoamericana 15 (1999), 279-296.

[11] R. M. Gong and L. X. Yan, Weighted estimates for the area integral associated to self-adjoint operators, (2011) (submitted).

[12] R. M. Gong and L. X. Yan, Littlewood-Paley and spectral multipliers on weighted spaces, (2011) (submitted).

[13] R. M. Gong and P. Z. Xie, Weighted estimates for the area integral associated to self-adjoint operators on homogeneous space, J. Math. Anal. Appl. 393 (2012), 590-604.

[14] S. Hofmann and S. Mayboroda, Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann. 344 (2009), 37-116.

[15] S. Hofmann, G. Z. Lu, D. Mitrea, M. Mitrea and L. X. Yan, Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Memoirs of the Amer. Math. Soc. 214(1007) (2011).

[16] Y. Komori and S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr. 282 (2009), 219-231.

[17] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.

[18] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr. 166 (1994), 95-103.

[19] D. K. Palagachev and L. G. Softova, Singular integral operators, Morrey spaces and fine regularity of solutions to PDE’s, Potential Anal. 20 (2004), 237-263.

[20] L. Softova, Singular integrals and commutators in generalized Morrey spaces, Acta Math. Sin. (Engl. Ser.) 22 (2006), 757-766.

[21] E. M. Stein, Singular Integral and Differentiability Properties of Functions, Princeton Univ. Press 30 (1970).

[22] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, 1993.

[23] L. X. Yan, Littlewood-Paley functions associated to second order operators, Math. Z. 246 (2004), 655-666.