[1] P. Auscher and E. Russ, Hardy spaces and divergence operators on
strongly Lipschitz domain of J. Funct. Anal. 201 (2003), 148-184.
[2] P. Auscher, X. T. Duong and A. McIntosh, Boundedness of Banach
space valued singular integral operators and Hardy spaces, (2005),
(unpublished preprint).
[3] P. Auscher, On necessary and sufficient conditions for of Riesz transforms associated to elliptic
operators on and related estimates, Memoirs of the Amer.
Math. Soc. 186(871) (2007).
[4] P. Auscher, A. McIntosh and E. Russ, Hardy spaces of differential
forms on Riemannian manifolds, J. Geom. Anal. 18 (2008), 192-248.
[5] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood
maximal function, Rend. Mat. Appl. 7 (1987), 273-279.
[6] T. Coulhon, X. T. Duong and X. D. Li, Littlewood-Paley-Stein
functions on complete Riemannian manifolds for Studia Math. 154 (2003), 37-57.
[7] J. Duoandikoetxea, Fourier Analysis, Translated and revised from
the 1995 Spanish original by David Cruz-Uribe, Graduate Studies in
Mathematics, 29, American Mathematical Society, Providence, RI,
2001.
[8] X. T. Duong and L. X. Yan, Duality of Hardy and BMO spaces
associated with operators with heat kernel bounds, J. Amer. Math. Soc.
18 (2005), 943-973.
[9] X. T. Duong, S. Hofmann, D. Mitrea, M. Mitrea and L. X. Yan, Hardy
spaces and regularity for the inhomogeneous Dirichlet and Neumann
problems, Rev. Mat. Iberoamericana (2010) (to appear).
[10] J. Dziubański and J. Zienkiewicz, Hardy space to Schrödinger operators with potential
satisfying reverse Hölder inequality, Rev. Mat. Iberoamericana 15
(1999), 279-296.
[11] R. M. Gong and L. X. Yan, Weighted estimates for the area integral associated
to self-adjoint operators, (2011) (submitted).
[12] R. M. Gong and L. X. Yan, Littlewood-Paley and spectral
multipliers on weighted spaces, (2011) (submitted).
[13] R. M. Gong and P. Z. Xie, Weighted estimates for the area integral associated
to self-adjoint operators on homogeneous space, J. Math. Anal. Appl.
393 (2012), 590-604.
[14] S. Hofmann and S. Mayboroda, Hardy and BMO spaces associated to
divergence form elliptic operators, Math. Ann. 344 (2009), 37-116.
[15] S. Hofmann, G. Z. Lu, D. Mitrea, M. Mitrea and L. X. Yan, Hardy
spaces associated to non-negative self-adjoint operators satisfying
Davies-Gaffney estimates, Memoirs of the Amer. Math. Soc. 214(1007)
(2011).
[16] Y. Komori and S. Shirai, Weighted Morrey spaces and a singular
integral operator, Math. Nachr. 282 (2009), 219-231.
[17] C. B. Morrey, On the solutions of quasi-linear elliptic partial
differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.
[18] E. Nakai, Hardy-Littlewood maximal operator, singular integral
operators and the Riesz potentials on generalized Morrey spaces, Math.
Nachr. 166 (1994), 95-103.
[19] D. K. Palagachev and L. G. Softova, Singular integral operators,
Morrey spaces and fine regularity of solutions to PDE’s,
Potential Anal. 20 (2004), 237-263.
[20] L. Softova, Singular integrals and commutators in generalized
Morrey spaces, Acta Math. Sin. (Engl. Ser.) 22 (2006), 757-766.
[21] E. M. Stein, Singular Integral and Differentiability Properties
of Functions, Princeton Univ. Press 30 (1970).
[22] E. M. Stein, Harmonic Analysis: Real Variable Methods,
Orthogonality and Oscillatory Integrals, Princeton Univ. Press,
1993.
[23] L. X. Yan, Littlewood-Paley functions associated to second order
operators, Math. Z. 246 (2004), 655-666.