[1] Y. I. Alber, Metric and generalized projection operators in Banach
spaces: Properties and applications, A. G. Kartosator (Editor),
Theory and Applications of Nonlinear Operators of Accretive and
Monotone Type, Marcel Dekker, New York, (1996), 15-50.
[2] N. Buong, Hybrid Ishikawa iterative methods for a nonexpansive
semigroup in Hilbert space, Comput. Math. Appl. 61 (2011),
2546-2554.
[3] C. Byrne, A unified treatment of some iterative algorithms in
signal processing and image construction, Inverse Probl. 20 (2004),
103-120.
[4] S. S. Chang, L. Yang and J. A. Liu, Strong convergence theorem for
nonexpansive semi-groups in Banach spaces, Appl. Math. Mech. 28
(2007), 1287-1297.
[5] S. S. Chang, H. W. Joseph Lee and C. K. Chan, Convergence theorem
of common fixed point for aysmptotically nonexpansive semi-groups in
Banach spaces, Appl. Math. Comput. 212 (2009), 60-65.
[6] S. S. Chang, H. W. Joseph Lee and C. K. Chan, A new hybrid method
for solving a generalized equilibrium problem solving a variational
inequality problem and obtaining common fixed points in Banach spaces
with applications, Nonlinear Anal. TMA 73 (2010), 2260-2270.
[7] S. S. Chang, C. K. Chan and H. W. Joseph Lee, Modified block
iterative algorithm for mappings and equilibrium problem in Banach
spaces, Appl. Math. Comput. 217 (2011), 7520-7530.
[8] S. S. Chang, H. W. Joseph Lee, C. K. Chan and L. Yang,
Approximation theorems for total nonexpansive mappings with applications,
Appl. Math. Comput. 218 (2011), 2921-2931.
[9] Y. J. Cho, L. Ciric and S. H. Wang, Convergence theorems for
nonexpansive semi-groups in CAT(0) spaces, Nonlinear Anal. doi:
10.1016/j.na.2011.05.082, (2011).
[10] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and
Nonlinear Problems, Kluwer Academic, Dordrecht, 1990.
[11] P. L. Combettes, The convex feasibility problem in image
recovery, P. Hawkes (Editor), Advances in Imaging and Electron
Physics, Academic Press, New York, 95 (1996), 155-270.
[12] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math.
Soc. 73 (1967), 957-961.
[13] S. Kitahara and W. Takahashi, Image recovery by convex
combinations of sunny nonexpansive retractions, Topol. Methods
Nonlinear Anal. 2 (1993), 333-342.
[14] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math.
Soc. 4 (1953), 506-510.
[15] K. Nakajo and W. Takahashi, Strong convergence theorems for
nonexpansive mappings and nonexpansive semi-groups, J. Math. Anal.
Appl. 279 (2003), 372-379.
[16] S. Plubtieng and K. Ungchittrakool, Hybrid iterative methods for
convex feasibility problems and fixed point problems of relatively
nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., Vol.
2008, Article ID 583082, 19 pages, doi: 10.1155/2008/583082,
(2008).
[17] X. L. Qin, Y. J. Cho, S. M. Kang and H. Y. Zhou, Convergence of a
modified Halpern-type iterative algorithm for mappings, Appl. Math. Lett. 22 (2009),
1051-1055.
[18] T. Suzuki, On strong convergence to common fixed points of
nonexpansive semi-groups in Hilbert spaces, Proc. Amer. Math. Soc. 131
(2003), 2133-2136.
[19] D. V. Thong, An implicit iteration process for nonexpansive
semigroups, Nonlinear Anal. doi: 10.1016/j.na.2011.05.090, (2011).
[20] H. K. Xu, A strong convergence theorem for contraction
semi-groups in Banach spaces, Bull. Austral. Math. Soc. 72 (2005),
371-379.
[21] L. Yang, F. H. Zhao and J. K. Kim, Hybrid projection method for
generalized mixed equilibrium problem and fixed point problem of
infinite family of asymptotically mappings in Banach spaces, Appl. Math.
Comput. 218 (2012), 6072-6082.
[22] S. S. Zhang, Convergence theorem of common fixed points for
Lipschitzian pseudo-contraction semi-groups in Banach spaces, Appl.
Math. Mech. 30(2) (2009), 145-152, (English Edition).
[23] H. Y. Zhou, G. Gao and B. Tan, Convergence theorems of a modified
hybrid algorithm for a family of nonexpansive mappings, J. Appl. Math.
Comput. (2009), doi:10.1007/s12190-009-0263-4.
[24] H. Zhou, G. Gao and B. Tan, Convergence theorems of a modified
hybrid algorithm for a family of nonexpansive mappings, Appl. Math. Comput.
32(2) (2010), 453-464.
[25] J. H. Zhu, S. S. Chang and M. Liu, Generalized mixed equilibrium
problems and fixed point problem for a countable family of total
nonexpansive mappings in Banach spaces, J.
Appl. Math. Vol. 2012, Article ID 961560, 22 pages, doi:
10.1155/2012/9 61560, (2012).