Author's: MUSUNDI SAMMY, SHEM AYWA, JAN FOURIE and JOHN WANYONYI MATUYA
Pages: [21] - [28]
Received Date: July 14, 2012
Submitted by:
Let denote the assignment which associates with
each pair of Banach spaces the vector space and be the space of all compact linear
operators from X to Y. Let and suppose converges in the dual weak operator
topology of T. Denote by the finite number given by
The u-norm on is then given by
It has been shown that is a Banach operator ideal. We find
conditions for to be an unconditional ideal in
ideal projection, separable reflexive space, unconditional compact approximation property (UKAP), u-ideal.