References

OPTIMAL HOUSEHOLD ENERGY MANAGEMENT AND ECONOMIC ANALYSIS: FROM SIZING TO OPERATION SCHEDULING


[1] ADEME, Les Energies et Matières Premières Renouvelables en France-Situation et Perspectives de Développement Dans le Cadre de la Lutte Contre le Changement Climatique, March, 26, 2003, Part 2, Available on
www.debat-energie.gouv.fr/site/pdf/enr-2.pdf

[2] J. L. Bernal-Agustin and R. Dufo-Lopez, Economical and environmental analysis of grid connected photovoltaic systems in Spain, Renewable Energy 31 (2006), 1107-1128.

[3] H. Bindner, T. Cronin, P. Lundsager, J. F. Manwell, U. Abdulwahid and I. Baring-Gould, Lifetime Modelling of Lead Acid Batteries, Project ENK6-CT-2001-80576, Risø National Laboratory, Roskilde, Denmark, April 2005.

[4] B. Burger and R. Rüthe, Site-dependent system performance and optimal inverter sizing of grid-connected PV systems, Photovoltaic Specialists Conference, 2005, Conference Record of the Thirty-first IEEE, 3-7 January (2005), 1675-1678.

[5] A. Cherif, M. Jrairi and A. Dhouid, A battery ageing model used in stand-alone PV systems, Journal of Power Sources 112 (2002), 49-53.

[6] Department for Communities and Local Government, The future of the code for sustainable homes: Making a rating mandatory, (2007),
www.communities.gov.uk

[7] Detailed Evaluation of Renewable Energy Power System Operation: A Summary of the European Union Hybrid Power System Component, Benchmarking Project, Available electronically at
http://www.osti.gov/bridge

[8] Fernández-Infantes, J. Contreras and J. L. Bernal-Agustín, Design of grid connected PV systems considering electrical, economical, and environmental aspects: A practical case, Renewable Energy 31(13) (2006), 2042-2062.

[9] D.-L. Ha, Un système avancé de gestion d’énergie dans le bâtiment pour coordonner production et consommation Ph.D. dissertation, Department Electrical Engineering, Institut National Polytechnique de Grenoble (INP Grenoble), Grenoble, September, 2007.

[10] J. C. Hernández, P. G. Vidal and G. Almonacid, Photovoltaic in grid-connected buildings: Sizing and economic analysis, Renewable Energy 15(1-4) (1998), 562-565.

[11] M. Ishengoma Frederick and Lars E. Norum, Design and implementation of a digitally controlled stand-alone photovoltaic supply, Nordic Workshop on Power and Industrial Electronics, NORPIE, 12-14 August 2002.

[12] A. Jäger-Waldau, Photovoltaics and renewable energies in Europe, Renewable and Sustainable Energy Reviews 11(7) (2007), 1414-1437.

[13] W. Lise and G. Kruseman, Long-term price and environmental effects in a liberalised electricity market, Energy Economics (In press) 2006.

[14] J. D. Moldol, Y. G. Yohanis and B. Norton, Optimal sizing of array and inverter for grid-connected photovoltaic systems, Solar Energy 80 (2006), 1517-1539.

[15] J. A. Momoh, Electric Power System Applications of Optimization, Marcel Dekker, Inc., 2001.

[16] G. Robin, O. Gergaud, H. Ben Ahmed, N. Barnard and B. Multon, Problématique du stockage d’énergie situé chez le consommateur connecté au réseau, EF’2003-Electrotechnique du Futur- 9 & 10 Décembre 2003, Supélec, Gif-sur-Yvette, France.

[17] G. Saenz de Miera, P. Del Rıo Gonzalez and I. Vizcaıno, Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain, Energy Policy 36 (2008), 3345- 3359.

[18] F. Wurtz, S. Bacha, T. T. Ha Pham, G. Foggia, D. Roye and G. Warkosek, Optimal Energy Management in Buildings: Sizing, Anticipative and Reactive Management, Energy Management System Workshop-Torino, 24-25 May 2007.