References

DIFFUSION VERSUS JUMP PROCESSES ARISING AS SCALING LIMITS IN POPULATION GENETICS


[1] M. Benhenda, A model of deliberation based on Rawls’s political liberalism, Social Choice and Welfare, Springer, 36 (2011), 121-178.

[2] M. Birkner and J. Blath, Computing likelihoods for coalescents with multiple collisions in the infinitely many sites model, J. Math. Biol. 57(3) (2008), 435-465.

[3] C. Cannings, The latent roots of certain Markov chains arising in genetics: A new approach, I, Haploid models, Advances in Appl. Probability 6 (1974), 260-290.

[4] C. Cannings, The latent roots of certain Markov chains arising in genetics: A new approach, II, Further haploid models, Advances in Appl. Probability 7 (1975), 264-282.

[5] J. F. Crow and M. Kimura, An Introduction to Population Genetics Theory, Harper & Row, Publishers, New York-London, 1970.

[6] E. B. Dynkin, Markov Processes, Vols. I, II, Translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra and G. Majone, Die Grundlehren der Mathematischen Wissenschaften, Bände 121, 122 Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, Vol. I: xii+365 pp.; Vol. II: viii+274 pp., 1965.

[7] B. J. Eldon and J. Wakeley, Coalescent processes when the distribution of offspring number among individuals is highly skewed, Genetics 172 (2006), 2621-2633.

[8] S. N. Ethier and T. G. Kurtz, Markov Processes, Characterization and Convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986.

[9] S. N. Ethier and T. G. Kurtz, Fleming-Viot processes in population genetics, SIAM J. Control Optim. 31(2) (1993), 345-386.

[10] W. J. Ewens, Mathematical Population Genetics, I, Theoretical Introduction, Second Edition, Interdisciplinary Applied Mathematics, 27, Springer-Verlag, New York, 2004.

[11] W. Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math. 55(2) (1952), 468-519.

[12] J. H. Gillespie, The Causes of Molecular Evolution, Oxford University Press, New York and Oxford, 1991.

[13] R. C. Griffiths, The frequency spectrum of a mutation, and its age, in a general diffusion model, Theoretical Population Biology, 64(2) (2003), 241-251.

[14] T. Huillet, On Wright-Fisher diffusion and its relatives, J. Stat. Mech., Th. and Exp. 11 (2007), 11006.

[15] T. Huillet and M. Möhle, Erratum on population genetics models with skewed fertilities: A forward and backward analysis [hal-00646215/fr], 2011.

[16] T. Huillet and M. Möhle, Population genetics models with skewed fertilities: A forward and backward analysis, Stochastic Models 27 (2011), 521-554.

[17] T. Huillet and M. Möhle, On the extended Moran model and its relation to coalescents with multiple collisions, Theor. Popul. Biol., Online first papers, to appear in 2012.

[18] S. Karlin and J. McGregor, Direct product branching processes and related Markov chains, Proc. Nat. Acad. Sci. USA 51 (1964), 598-602.

[19] S. Karlin and H. M. Taylor, A Second Course in Stochastic Processes, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981.

[20] B. V. Khvedelidze, Fredholm Theorems for Integral Equations, in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, 2001.

[21] M. Kimura, On the probability of fixation of mutant genes in a population, Genetics 47 (1962), 713-719.

[22] M. Kimura and T. Ohta, The age of a neutral mutant persisting in a finite population, Genetics 75 (1973), 199-212.

[23] J. F. C. Kingman, The coalescent, Stochastic Process. Appl. 13 (1982), 235-248.

[24] A. Kolmogorov, S. Fomine and V. M. Tihomirov, Eléments de la théorie des fonctions et de l’analyse fonctionnelle, (French) Avec un complément sur les algèbres de Banach, par V. M. Tikhomirov, Éditions Mir, Moscow, 536 pp, 1974.

[25] P. Mandl, Analytical Treatment of One-Dimensional Markov Processes, Die Grundlehren der Mathematischen Wissenschaften, Band 151 Academia Publishing House of the Czechoslovak Academy of Sciences, Prague; Springer-Verlag New York Inc., New York, 1968.

[26] T. Maruyama, Stochastic Problems in Population Genetics, Lecture Notes in Biomathematics, 17, Springer-Verlag, Berlin-New York, 1977.

[27] M. Möhle and S. Sagitov, A classification of coalescent processes for haploid exchangeable population models, Ann. Probab. 29(4) (2001), 1547-1562.

[28] P. A. P. Moran, Random processes in genetics, Proc. Cambridge Philos. Soc. 54 (1958), 60-71.

[29] T. Nagylaki, The moments of stochastic integrals and the distribution of sojourn times, Proc. Nat. Acad. Sci. USA 71 (1974), 746-749.

[30] E. Pardoux, Probabilistic models of population genetics, 2009.
www.latp.univ-mrs.fr/~pardoux/enseignement/cours_ge npop.pdf

[31] A. Pinkus, Spectral Properties of Totally Positive Kernels and Matrices, In: Total Positivity and its Applications, M. Gasca and A. Micchelli (Eds), 1-35, 1995.

[32] J. Pitman, Coalescents with multiple collisions, Ann. Probab. 27(4) (1999), 1870-1902.

[33] S. Sagitov, The general coalescent with asynchronous mergers of ancestral lines, J. Appl. Probab. 36(4) (1999), 1116-1125.

[34] S. Tavaré, Ancestral Inference in Population Genetics, Lectures on Probability Theory and Statistics, Saint-Flour 2001, Lecture Notes in Math., 1837, (1-188) Springer, 2004.