[1] M. Benhenda, A model of deliberation based on Rawls’s
political liberalism, Social Choice and Welfare, Springer, 36 (2011),
121-178.
[2] M. Birkner and J. Blath, Computing likelihoods for coalescents
with multiple collisions in the infinitely many sites model, J. Math.
Biol. 57(3) (2008), 435-465.
[3] C. Cannings, The latent roots of certain Markov chains arising in
genetics: A new approach, I, Haploid models, Advances in Appl.
Probability 6 (1974), 260-290.
[4] C. Cannings, The latent roots of certain Markov chains arising in
genetics: A new approach, II, Further haploid models, Advances in
Appl. Probability 7 (1975), 264-282.
[5] J. F. Crow and M. Kimura, An Introduction to Population Genetics
Theory, Harper & Row, Publishers, New York-London, 1970.
[6] E. B. Dynkin, Markov Processes, Vols. I, II, Translated with the
authorization and assistance of the author by J. Fabius, V. Greenberg,
A. Maitra and G. Majone, Die Grundlehren der Mathematischen
Wissenschaften, Bände 121, 122 Academic Press Inc., Publishers, New
York; Springer-Verlag, Berlin-Göttingen-Heidelberg, Vol. I: xii+365
pp.; Vol. II: viii+274 pp., 1965.
[7] B. J. Eldon and J. Wakeley, Coalescent processes when the
distribution of offspring number among individuals is highly skewed,
Genetics 172 (2006), 2621-2633.
[8] S. N. Ethier and T. G. Kurtz, Markov Processes, Characterization
and Convergence, Wiley Series in Probability and Mathematical
Statistics: Probability and Mathematical Statistics, John Wiley &
Sons, Inc., New York, 1986.
[9] S. N. Ethier and T. G. Kurtz, Fleming-Viot processes in population
genetics, SIAM J. Control Optim. 31(2) (1993), 345-386.
[10] W. J. Ewens, Mathematical Population Genetics, I, Theoretical
Introduction, Second Edition, Interdisciplinary Applied Mathematics,
27, Springer-Verlag, New York, 2004.
[11] W. Feller, The parabolic differential equations and the
associated semi-groups of transformations, Ann. of Math. 55(2) (1952),
468-519.
[12] J. H. Gillespie, The Causes of Molecular Evolution, Oxford
University Press, New York and Oxford, 1991.
[13] R. C. Griffiths, The frequency spectrum of a mutation, and its
age, in a general diffusion model, Theoretical Population Biology,
64(2) (2003), 241-251.
[14] T. Huillet, On Wright-Fisher diffusion and its relatives, J.
Stat. Mech., Th. and Exp. 11 (2007), 11006.
[15] T. Huillet and M. Möhle, Erratum on population genetics models
with skewed fertilities: A forward and backward analysis
[hal-00646215/fr], 2011.
[16] T. Huillet and M. Möhle, Population genetics models with
skewed fertilities: A forward and backward analysis, Stochastic Models
27 (2011), 521-554.
[17] T. Huillet and M. Möhle, On the extended Moran model and its
relation to coalescents with multiple collisions, Theor. Popul. Biol.,
Online first papers, to appear in 2012.
[18] S. Karlin and J. McGregor, Direct product branching processes and
related Markov chains, Proc. Nat. Acad. Sci. USA 51 (1964),
598-602.
[19] S. Karlin and H. M. Taylor, A Second Course in Stochastic
Processes, Academic Press, Inc. [Harcourt Brace Jovanovich,
Publishers], New York-London, 1981.
[20] B. V. Khvedelidze, Fredholm Theorems for Integral Equations, in
Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, 2001.
[21] M. Kimura, On the probability of fixation of mutant genes in a
population, Genetics 47 (1962), 713-719.
[22] M. Kimura and T. Ohta, The age of a neutral mutant persisting in
a finite population, Genetics 75 (1973), 199-212.
[23] J. F. C. Kingman, The coalescent, Stochastic Process. Appl. 13
(1982), 235-248.
[24] A. Kolmogorov, S. Fomine and V. M. Tihomirov, Eléments de la
théorie des fonctions et de l’analyse fonctionnelle,
(French) Avec un complément sur les algèbres de Banach, par V.
M. Tikhomirov, Éditions Mir, Moscow, 536 pp, 1974.
[25] P. Mandl, Analytical Treatment of One-Dimensional Markov
Processes, Die Grundlehren der Mathematischen Wissenschaften, Band 151
Academia Publishing House of the Czechoslovak Academy of Sciences,
Prague; Springer-Verlag New York Inc., New York, 1968.
[26] T. Maruyama, Stochastic Problems in Population Genetics, Lecture
Notes in Biomathematics, 17, Springer-Verlag, Berlin-New York,
1977.
[27] M. Möhle and S. Sagitov, A classification of coalescent
processes for haploid exchangeable population models, Ann. Probab.
29(4) (2001), 1547-1562.
[28] P. A. P. Moran, Random processes in genetics, Proc. Cambridge
Philos. Soc. 54 (1958), 60-71.
[29] T. Nagylaki, The moments of stochastic integrals and the
distribution of sojourn times, Proc. Nat. Acad. Sci. USA 71 (1974),
746-749.
[30] E. Pardoux, Probabilistic models of population genetics, 2009.
www.latp.univ-mrs.fr/~pardoux/enseignement/cours_ge
npop.pdf
[31] A. Pinkus, Spectral Properties of Totally Positive Kernels and
Matrices, In: Total Positivity and its Applications, M. Gasca and A.
Micchelli (Eds), 1-35, 1995.
[32] J. Pitman, Coalescents with multiple collisions, Ann. Probab.
27(4) (1999), 1870-1902.
[33] S. Sagitov, The general coalescent with asynchronous mergers of
ancestral lines, J. Appl. Probab. 36(4) (1999), 1116-1125.
[34] S. Tavaré, Ancestral Inference in Population Genetics,
Lectures on Probability Theory and Statistics, Saint-Flour 2001,
Lecture Notes in Math., 1837, (1-188) Springer, 2004.